Journal of Applied Spectroscopy

, Volume 72, Issue 2, pp 155–163 | Cite as

Calculation and Analysis of the IR Spectra of Cytosine in Various Phase States

  • G. N. Ten
  • V. I. Baranov


Plane vibrations and intensities of the IR spectra of the ketone and enol forms of cytosine and deuterocytosine in various phase states are calculated and analyzed. It is shown that in a crystalline state and an aqueous solution cytosine forms a hydrogen bond of two types: C2=O8...HN1 and C2=O8...HN10, with a stronger intermolecular interaction in both phases being implemented by the hydrogen bonds between the O8 and N1 atoms. A satisfactory interpretation of the spectrum of the isolated molecules of cytosine, with the simultaneously existing ketone and enol tautomeric forms, is possible in the presence of the structural isomers of the enol form that differ in the position of multiple bonds.


tautomer of cytosine IR spectrum hydrogen bond 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ferro, L. Bencivenni, R. Teghil, and R. Mastromarino, Thermochim. Acta, 42, 75–83 (1980).Google Scholar
  2. 2.
    A. Aamouche, M. Ghomi, L. Grajcar, M. H. Baron, F. Romain, V. Baumruk, J. Stepanek, C. Coulombeau, H. Jobic, and G. Berthierl, J. Phys. Chem., 101A, 10063–10074 (1997).Google Scholar
  3. 3.
    J. Florian, V. Baumruk, and J. Leszczynski, J. Phys. Chem., 100, 5578–5589 (1996).Google Scholar
  4. 4.
    H. Susi, J. S. Ard, and J. M. Purcell, Spectrochim. Acta, 29A, 725–733 (1973).Google Scholar
  5. 5.
    H. Susi and J. S. Ard, Spectrochim. Acta, 30A, 1843–1853 (1974).Google Scholar
  6. 6.
    M. J. Nowak, L. Lapinski, and J. Fulara, Spectrochim. Acta, 45A, 229–242 (1989).Google Scholar
  7. 7.
    E. D. Radchenko, A. M. Plokhotnichenko, A. Yu. Ivanov, G. G. Sheina, and Yu. P. Blagoi, Biofizika, 31, 373–381 (1986).Google Scholar
  8. 8.
    K. Szczepaniak, M. M. Szczesniak, J. S. Kwiatkowski, K. KuBulat, and W. B. Person, J. Am. Chem. Soc., 110, 8319–8330 (1988).Google Scholar
  9. 9.
    A. K. Chandra, M. T. Nguyen, and Th. Zeegers-Huyskens, J. Mol. Struct., 519, 1–11 (2000).Google Scholar
  10. 10.
    J. S. Kwiatkowski and B. P. Pullman, Adv. Heterocyclic Chem., 18, 199–335 (1975).Google Scholar
  11. 11.
    A. R. Katritzky and M. Karelson, J. Am. Chem. Soc., 113, 1561–1572 (1991).Google Scholar
  12. 12.
    D. L. Barker and R. E. Marsh, Acta Crystallogr., 17, 1581–1588 (1964).Google Scholar
  13. 13.
    L. A. Gribov and V. A. Dement’ev, Methods and Algorithms of Computation in the Theory of the Vibrational Spectra of Polyatomic Molecules [in Russian], Moscow (1981).Google Scholar
  14. 14.
    H. Susi and J. S. Ard, Spectrochim. Acta, 27A, 1549–1562 (1974).Google Scholar
  15. 15.
    G. N. Ten, T. G. Burova, and V. I. Baranov, Zh. Struk. Khim., 42, 666–676 (2001).Google Scholar
  16. 16.
    G. N. Ten, T. G. Burova, and V. I. Baranov, Zh. Prikl. Spektrosk., 72, 99–105 (2005).Google Scholar
  17. 17.
    G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, Berlin (1991).Google Scholar
  18. 18.
    L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules [in Russian], Moscow (1970).Google Scholar
  19. 19.
    G. N. Ten, T. G. Burova, and V. I. Baranov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 47–59 (2004).Google Scholar
  20. 20.
    M. V. Vol’kenshtein, L. A. Gribov, M. A. El’yashevich, and B. I. Stepanov, Vibrations of Molecules [in Russian], Moscow (1972).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.N. G. Chernyshevskii Saratov State UniversitySaratovRussia
  2. 2.V. I. Vernadskii Institute of Geochemistry and Analytical ChemistryMoscowRussia

Personalised recommendations