Advertisement

Journal of Applied Spectroscopy

, Volume 72, Issue 1, pp 132–137 | Cite as

Electrothermal atomization of a substance with fractional condensation of the element being determined on a probe

  • Yu. A. Zakharov
  • A. Kh. Gil’mutdinov
  • O. B. Kokorina
Article

Abstract

This paper describes a method of electrothermal atomization with a fractional condensation of the elements being determined on a refractory probe with the aim of decreasing the matrix influences on the atomic-absorption signal. In the course of primary atomization of the sample, the probe is placed over the dosing port of a tubular atomizer. The internal argon flow directs the vapor to the probe for the condensation of the elements being determined. The matrix vapors volatilize. Then the probe is inserted into the atomizer for evaporation of the elements and analytical signal recording. It has been shown that this technique makes it possible to decrease the influence of sodium chloride and potassium sulfate on the absorption of Ag, Cd, Pb, and Au by a factor of 50–20,000 as compared to the atomization from the atomizer wall. In the case of Au, this decrease is comparable to the level attained under the conventional conditions of a stabilized temperature furnace with a platform, a modifier, and a background corrector based on the Zeeman effect, while for the other elements its efficiency is 1.5–40 times higher.

Keywords

electrostatic atomic-absorption spectrometry fractional condensation refractory probe matrix interference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    T. M. Rettberg and J. A. Holcombe, Spectrochim. Acta, 39A, 249–260 (1984).Google Scholar
  2. 2.
    T. M. Rettberg and J. A. Holcombe, Spectrochim. Acta, 41A, 377–389 (1986).Google Scholar
  3. 3.
    T. M. Rettberg and J. A. Holcombe, Anal. Chem., 58, 1462–1467 (1986).Google Scholar
  4. 4.
    T. M. Rettberg and J. A. Holcombe, Anal. Chem., 60, 600–605 (1988).Google Scholar
  5. 5.
    D. A. Katskov and N. A. Orlov, Atomic-Absorption Analysis of Geological Samples. Electrothermal Atomization [in Russian], Apatity (1990).Google Scholar
  6. 6.
    P. Hocqullet, Spectrochim. Acta, 47A, 719–729 (1992).Google Scholar
  7. 7.
    Yu. A. Zakharov and A. Kh. Gil’mutdinov, Zh. Prikl. Spektrosk., 71, 109–114 (2004).Google Scholar
  8. 8.
    A. Kh. Gilmutdinov, M. Sperling, and B. Welz, Electrothermal Atomization Means for Analytical Spectrometry, U.S. Patent No. 5, 981, 912 (1999).Google Scholar
  9. 9.
    K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, Zh. Anal. Khim., 58, 439–446 (2003).Google Scholar
  10. 10.
    A. N. Rcheushvilli, Zh. Anal. Khim., 36, 1889–1894 (1981).Google Scholar
  11. 11.
    I. L. Grinshtein, Y. A. Vil’pan, A. V. Saraev, and L. A. Vasilieva, in: Proc. 4th Eur. Furnace Symp. and XVth Slovak Spectroscopic Conf., Kosice-Hihg Tetras-Slovakia (2000), pp. 229–234.Google Scholar
  12. 12.
    I. L. Grinshtein, Y. A. Vil’pan, A. V. Saraev, and L. A. Vasilieva, Spectrochim. Acta, 56B, 261–274 (2001).Google Scholar
  13. 13.
    Yu. A. Zakharov and A. Kh. Gil’mutdinov, Zh. Prikl. Spektrosk., 71, 253–258 (2004).Google Scholar
  14. 14.
    G. Hermann, A. Trenin, R. Matz, M. Gafurov, A. Kh. Gil’mutdinov, K. Yu. Nagulin, W. Frech, E. Björn, I. Grinshtein, and L. Vasilieva, Spectrochim. Acta, 59B, 737–748 (2004).Google Scholar
  15. 15.
    G. Schlemmer and B. Radziuk, Analytical Graphite Furnace Atomic Absorption Spectrometry. A Laboratory Guide, Birkhauser Verlag, Basel, Switzerland (1999).Google Scholar
  16. 16.
    Yu. A. Zakharov and A. Kh. Gil’mutdinov, Method of Spectral Analysis, RF Patent No. 2229701 (2004).Google Scholar
  17. 17.
    B. V. L’vov, Atomic-Absorption Analysis [in Russian], Nauka, Moscow (1966).Google Scholar
  18. 18.
    D. Littlejohn, S. Cook, D. Durie, and J. M. Ottaway, Spectrochim. Acta, 39B, 295–304 (1984).Google Scholar
  19. 19.
    H. Berndt and J. Messerschmidt, Fresenius Z. Anal. Chem., 316, 201–204 (1983).Google Scholar
  20. 20.
    D. C. Manning, W. Slawin, and S. Myers, Anal. Chem., 51, 2375–2378 (1979).Google Scholar
  21. 21.
    R. M. Camero, L. M. Forglietta, and J. Alvarado D, At. Spectrosc., 23, 12–15 (2002).Google Scholar
  22. 22.
    M. V. Grebennikov, A. A. Emel’yanov, Yu. P. Lyashenko, and V. I. Barsukov, Method of Electrothermal Atomization, USSR Inventor’s Certificate No. 1567938 A1, G01 N 21/74 (1990).Google Scholar
  23. 23.
    G. N. Abramovich, Applied Gas Dynamics [in Russian], Nauka, Moscow (1969).Google Scholar
  24. 24.
    B. Welz, G. Schlemmer, and J. Mudakavi, J. Anal. At. Spectrom., 7, 1257–1271 (1992).Google Scholar
  25. 25.
    V. A. Kireev, A Short Course in Physical Chemistry [in Russian], Khimiya, Moscow (1969).Google Scholar
  26. 26.
    M. Sperling, B. Welz, J. Hertzberg, C. Rieck, and G. Marowsky, Spectrochim. Acta, 51B, 897–930 (1996).Google Scholar
  27. 27.
    M. A. Castro, K. Faulds, W. E. Smith, A. J. Aller, and D. Littlejohn, Spectrochim. Acta, 59B, 827–839 (2004).Google Scholar
  28. 28.
    A. J. Scheie and J. A. Holcombe, J. Anal. At. Spectrom., 9, 415–417 (1994).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yu. A. Zakharov
    • 1
  • A. Kh. Gil’mutdinov
    • 1
  • O. B. Kokorina
    • 1
  1. 1.Kazan State UniversityKazanRussia

Personalised recommendations