Effective biomass harvesting of marine diatom Chaetoceros muelleri by chitosan-induced flocculation, preservation of biomass, and recycling of culture medium for aquaculture feed application

Abstract

Microalgae are a promising new source of biomass; however, large-scale economical harvesting of microalgal biomass is a major technological and economic challenge, limiting the commercial production of microalgal biomass for high-value compounds. In this study, the cationic polymer chitosan was used for the harvesting of the marine diatom Chaetoceros muelleri. Natural flocculation, and pH and chitosan-induced flocculation were studied in detail. The effects of flocculant dosage, culture pH, initial biomass concentration, and sedimentation time were investigated on biomass recovery. The results showed that flocculation efficiency can reach > 99% with an optimum dosage of chitosan (80 mg L−1) at pH 9.6 and settling time of 40 minutes for biomass concentration from 0.2 to 1.2 g L−1. The reusability of the recycled water, preservation of biomass after harvesting, and cost of the harvesting process were evaluated. The results showed that the chitosan-induced flocculation offers an efficient, cost-effective, rapid, and sustainable harvesting method for C. muelleri biomass for food and feed applications in aquaculture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Optimization of microalgae coagulation process using chitosan. Chem Eng 173:879–882

    CAS  Article  Google Scholar 

  2. Alam MA, Wan C, Guo SL, Zhao XQ, Huang ZY, Yang YL, Chang JS, Bai FW (2014) Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7. J Biosci Bioeng 118:29–33

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Augustine A, Kumaran J, Puthumana J, Sabu S, Singh ISB, Joseph V (2017) Multifactorial interactions and optimization in biomass harvesting of marine picoalga Picochlorum maculatum MACC3 with different flocculants. Aquaculture 474:18–25

    CAS  Article  Google Scholar 

  4. Augustine A, Tanwar A, Tremblay R, Kumar S (2019) Flocculation processes optimization for reuse of culture medium without pH neutralization. Algal Res 39:101437

    Article  Google Scholar 

  5. Besson A, Guiraud P (2013) High-pH-induced flocculation–flotation of the hypersaline microalga Dunaliella salina. Bioresour Technol 147:464–470

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Blockx J, Verfaillie A, Thielemans W, Muylaert K (2018) Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sustain Chem Eng 6:11273–11279

    CAS  Article  Google Scholar 

  7. Branyikova I, Filipenska M, Urbanova K, Ruzicka MC, Pivokonsky M, Branyik T (2018) Physicochemical approach to alkaline flocculation of Chlorella vulgaris induced by calcium phosphate precipitates. Colloids Surf B 166:54–60

    CAS  Article  Google Scholar 

  8. Brennan L, Owende P (2010) Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    CAS  Article  Google Scholar 

  9. Chatsungnoen T, Chisti Y (2016) Harvesting microalgae by flocculation–sedimentation. Algal Res 13:271–283

    Article  Google Scholar 

  10. Chen L, Wang C, Wang W, Wei J (2013) Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system. Bioresour Technol 133:9–15

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Chen G, Zhao L, Qi Y, Cui YL (2014) Chitosan and its derivatives applied in harvesting microalgae for biodiesel production: an outlook. J Nanomater 2014:217537

  12. Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Corrêa DO, Duarte MER, Noseda MD (2019) Biomass production and harvesting of Desmodesmus subspicatus cultivated in flat plate photobioreactor using chitosan as flocculant agent. J Appl Phycol 31:857–866

    Article  CAS  Google Scholar 

  14. D’Souza FML, Knuckey RM, Hohmann S, Pendrey RC (2002) Flocculated microalgae concentrates as diets for larvae of the tiger prawn Penaeus monodon Fabricius. Aquac Nutr 8:113–120

    Article  Google Scholar 

  15. Dai L, Tan L, Jin X, Wu H, Wu H, Li T, Xiang W (2020) Evaluating the potential of carbohydrate-rich microalga Rhodosorus sp. SCSIO-45730 as a feedstock for biofuel and β-glucans using strategies of phosphate optimization and low-cost harvest. J Appl Phycol 32:3051–3061

    CAS  Article  Google Scholar 

  16. Danquah MK, Gladman B, Moheimani N, Forde GM (2009) Microalgal growth characteristics and subsequent influence on dewatering efficiency. Chem Eng J 151:73–78

    CAS  Article  Google Scholar 

  17. Das P, Thaher MI, Hakim A, Al-Jabri HM, Alghasal GS (2016) Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. Bioresour Technol 216:824–829

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Elias JL, Voltolina D, Enriquez LO, Simental G (2005) Indoor and outdoor mass production of the diatom Chaetoceros muelleri in a Mexican commercial hatchery. Aquac Eng 33:181–191

    Article  Google Scholar 

  19. Farid MS, Shariati A, Badakhshan A, Anvaripour B (2013) Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol 131:555–559

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Fernandez CG, Ballesteros M (2013) Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. J Appl Phycol 25:991–999

    Article  CAS  Google Scholar 

  21. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, Connell CO, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. Fon Sing S, Isdepsky A, Borowitzka MA, Lewis DM (2014) Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour Technol 161:47–54

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Gerde JA, Yao L, Lio J, Wen Z, Wang T (2014) Microalgae flocculation: impact of flocculant type, algae species and cell concentration. Algal Res 3:30–35

    Article  Google Scholar 

  25. Granados MR, Acien FG, Gomez C, Sevilla JMF, Molina GE (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL, Alam MA, Ho SH, Bai FW, Chang JS (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Gutierrez R, Passos F, Ferrer I, Uggetti E, García J (2015) Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res 9:204–211

    Article  Google Scholar 

  28. Harith ZT, Yusoff FM, Mohamed MS, Shariff M, Din M, Ariff AB (2009) Effect of different flocculants on the flocculation performance of flocculation performance of microalgae, Chaetoceros calcitrans, cells. Afr J Biotechnol 8:5971–5978

    CAS  Article  Google Scholar 

  29. Haver LV, Nayar S (2017) Polyelectrolyte flocculants in harvesting microalgal biomass for food and feed applications. Algal Res 24:167–180

    Article  Google Scholar 

  30. Heasman M, Diemar J, Oconnor W, Sushames T, Foulkes L (2000) Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs - a summary. Aquac Res 31:637–659

    Google Scholar 

  31. Henderson R, Parsons SA, Jefferson B (2008) The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res 42:1827–1845

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Kaseamchochoung C, Lertsutthiwong P, Phalakornkule C (2006) Influence of chitosan characteristics and environmental conditions on flocculation of anaerobic sludge. Water Environ Res 78:2210–2216

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Kirnev PCS, de Carvalho JC, Miyaoka JT, Cartas LC, Vandenberghe LPS, Soccol CR (2018) Harvesting Neochloris oleoabundans using commercial organic flocculants. J Appl Phycol 30:2317–2324

    CAS  Article  Google Scholar 

  34. Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313

    Article  Google Scholar 

  35. Kothari R, Pathak VV, Pandey A, Ahmad S, Srivastava C, Tyagi VV (2017) A novel method to harvest Chlorella sp. via low cost bioflocculant: influence of temperature with kinetic and thermodynamic functions. Bioresour Technol 225:84–89

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Kumar TS, Poornima M, Alavandi SV (2017) Immunostimulants in aquaculture. In: Vijayan KK, Makesh M, Otta SK, Patil PK, Poornima M, Alavandi SV (eds) Prophylaxis in aquaculture. CIBA- ICAR, Chennai, pp 175–185

    Google Scholar 

  37. Kumaran J, Jose B, Joseph V, Singh ISB (2017) Optimization of growth requirements of marine diatom Chaetoceros muelleri using Response Surface Methodology. Aquac Res 48:1513–1524

    CAS  Article  Google Scholar 

  38. Kwon H, Lu M, Lee EY, Lee J (2014) Harvesting of microalgae using flocculation combined with dissolved air flotation. Biotechnol Bioprocess Eng 19:143–149

    CAS  Article  Google Scholar 

  39. Lama S, Muylaert K, Karki TB, Foubert I, Henderson RK, Vandamme D (2016) Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation. Bioresour Technol 220:464–470

    CAS  PubMed  Article  Google Scholar 

  40. Larkum AWD, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–205

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567

    CAS  Article  Google Scholar 

  42. Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T (2013) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6:1–11

    Article  CAS  Google Scholar 

  43. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Pahl SL, Lee AK, Kalaitzidis T, Ashman PJ, Sathe S, Lewis DM (2013) Harvesting, thickening and dewatering microalgae biomass. In: Borowitzka M, Moheimani N (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 165–185

  45. Perez L, Salgueiro JL, Maceiras R, Cancela A, Sanchez A (2017) An effective method for harvesting of marine microalgae: pH induced flocculation. Biomass Bioenergy 97:20–26

    CAS  Article  Google Scholar 

  46. Pradana YS, Kusumastuti Y, Rahma FN, Effendy N (2017) Chitosan flocculation-sedimentation for harvesting selected microalgae species grown in monoculture and mixed cultures. Chem Eng Trans 56:1549–1554

    Google Scholar 

  47. Rashid N, Rehman SU, Hana JI (2013) Rapid harvesting of freshwater microalgae using chitosan. Process Biochem 48:1107–1110

    CAS  Article  Google Scholar 

  48. Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes-An eco-friendly approach. Eur Polym J 45:1337–1348

    CAS  Article  Google Scholar 

  49. Rochana W, Niroshan W, Tiruchenduran S, Sulaiman MA, Mahesh D (2019) Effects of chitosan on growth, immune responses and survival of juvenile tiger shrimp (Penaeus monodon Fabricius, 1798). Int J Fish Aquat Stud 7:129–133

    Google Scholar 

  50. Salim S, Vermue MH, Wijffels RH (2012) Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour Technol 118:49–55

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. Salim S, Kosterink NR, Wacka NDT, Vermue MH, Wijffels RH (2014) Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis. J Biotechnol 174:34–38

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. Sanabria AJG, Davis RT, Nikolov ZL (2012) Harvesting Nannochloris oculata by inorganic electrolyte flocculation: effect of initial cell density, ionic strength, coagulant dosage, and media pH. Bioresour Technol 118:418–424

    Article  CAS  Google Scholar 

  53. Sirin S, Trobajo R, Ibanez C, Salvado J (2012) Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 24:1067–1080

    CAS  Article  Google Scholar 

  54. Strand SP, Varum KM, Kjetill O (2003) Interactions between chitosan and bacterial suspensions: adsorption and flocculation. Colloids Surf B 27:71–81

    CAS  Article  Google Scholar 

  55. Szyjka SJ, Mandal S, Schoepp NG, Tyler BM, Yohn CB, Poon YS, Villareal S, Burkart MD, Shurin JB, Mayfield SP (2017) Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res 24:378–386

    Article  Google Scholar 

  56. Ummalyma SB, Mathew AK, Pandey A, Sukumaran RK (2016) Harvesting of microalgal biomass: efficient method for flocculation through pH modulation. Bioresour Technol 213:216–221

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. Ummalyma SB, Gnansounou E, Sukumaran RK, Sindhu R, Pandey A, Sahoo D (2017) Bioflocculation: an alternative strategy for harvesting of microalgae - an overview. Bioresour Technol 242:227–235

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. Vandamme V, Foubert I, Fraeye I, Muylaert K (2012a) Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour Technol 124:508–511

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012b) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:232–239

    Article  CAS  Google Scholar 

  61. Vandamme D, Pohl PI, Beuckels A, Foubert I, Brady PV, Hewson JC, Muylaert K (2015) Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite. Bioresour Technol 196:656–66l

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. Vega JMP, Saavedra MPS (2009) The biochemical composition of Chaetoceros muelleri (Lemmermann Grown) with an agricultural fertilizer. J World Aquacult Soc 40:556–560

    Article  Google Scholar 

  63. Wan C, Alam MA, Zhao XQ, Zhang XY, Guo SL, Ho SH, Chang JS, Bai FW (2015) Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol 184:251–257

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. Wang LK, Hung YT, Shammas NK (2005) Physicochemical treatment processes. Handbook of environmental engineering. In: Lawrence KW, Yung TH, Nazih KS (eds) Handbook of environmental engineering. Humana Press, New Jersey, pp 103–138

  65. Wang XW, Liang JR, Luo CS, Chen CP, Gao YH (2014) Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol 161:124–130

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    CAS  Article  Google Scholar 

  67. Wu S, Xie X, Huan L, Zheng Z, Zhao P, Kuang J, Liu X, Wang G (2016) Selection of optimal flocculant for effective harvesting of the fucoxanthin-rich marine microalga Isochrysis galbana. J Appl Phycol 28:1579–1588

    CAS  Article  Google Scholar 

  68. Wyatt NB, Gloe LM, Brady PV, Hewson JC, Grillet AM, Hankins MG, Pohl PI (2012) Critical conditions for ferric chloride induced flocculation of freshwater algae. Biotechnol Bioeng 109:493–501

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. Xu Y, Purton S, Baganz F (2013) Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour Technol 129:296–301

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Yang F, Xiang W, Fan J, Wu H, Li T, Long L (2016) High pH-induced flocculation of marine Chlorella sp. for biofuel production. J Appl Phycol 28:747–756

    CAS  Article  Google Scholar 

  71. Zhu L, Li Z, Hiltunen E (2018) Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol Biofuels 11:183

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Kerala Biotechnology Commission, Kerala State Council for Science Technology and Environment (KSCSTE), the Government of Kerala, India, and M/s Oriental Aquamarine Biotech. India (Pvt.) Ltd, Coimbatore, India, under the Industry Linked Biotechnology Research Scheme (File No. 17 /IBRS /KBC/2009/KSCSTE). The first author is a recipient of BSR fellowship by the University Grants Commission (UGC), Government of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valsamma Joseph.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Fig. 1
figure10

Growth of C. muelleri in modified F/2 medium. Data are represented with ± standard error (SE; n = 3) (PNG 183 kb)

Supplementary Fig. 2
figure11

Pictures of flocculation of C. muelleri at different pH values, (a) 10.0; (b) 10.10; (c) 10.12; (d) 10. 14; (e) 10.16 (f) 10.18; (g) 10.20; (h) 10.22 (PNG 417 kb)

Supplementary Fig. 3
figure12

Flocculation of C. muelleri treated with different concentrations of chitosan. Data are represented with ± standard error (SE; n = 3) (PNG 194 kb)

Supplementary Fig. 4
figure13

C. muelleri culture before and after flocculation (A) 10 L culture, (B) 1 L culture (C) microscopic image (PNG 1182 kb)

High resolution image (TIF 2479 kb)

High resolution image (TIF 134328 kb)

High resolution image (TIF 3205 kb)

High resolution image (TIF 321 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumaran, J., Singh, I.S.B. & Joseph, V. Effective biomass harvesting of marine diatom Chaetoceros muelleri by chitosan-induced flocculation, preservation of biomass, and recycling of culture medium for aquaculture feed application. J Appl Phycol (2021). https://doi.org/10.1007/s10811-021-02369-4

Download citation

Keywords

  • Microalgae
  • Chaetoceros muelleri
  • Biomass harvesting
  • Flocculation
  • Chitosan