Transgenic eukaryotic microalgae as green factories: providing new ideas for the production of biologically active substances

Abstract

Eukaryotic microalgae are important primary producers in nature that play an important role in the energy cycle of nature. The eukaryotic microalgae are also regarded as potential bioactive substance producers. In recent years, with the aid of genetic engineering, eukaryotic microalgae have found a wider range of potential applications in medicine, food, health products, cosmetics, and environmental protection. This article reviews the state of the art of microalga genetic engineering from the aspects of gene transfer system, gene editing technology, and screening method, with examples of the enhancement of lipids, carotenoids, polysaccharide, and functional proteins. Potential application scenarios of microalga genetic engineering and their products in the field of food and medicine are also highlighted. Furthermore, strategies for protein expression optimization in eukaryotic microalgae are reviewed. The existing shortcomings of eukaryotic microalga genetic engineering are also analyzed and highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13:540–550

    CAS  PubMed  Article  Google Scholar 

  2. Aikawa S, Ho SH, Nakanishi A, Chang JS, Hasunuma T, Kondo A (2015) Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnol J 10:886–898

    CAS  PubMed  Article  Google Scholar 

  3. Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L, Orchard E, Kalb R, Xu W, Carlson TJ, Francis K, Konigsfeld K, Bartalis J, Schultz A, Lambert W, Schwartz AS, Brown R, Moellering ER (2017) Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol 35:647–652

    CAS  PubMed  Article  Google Scholar 

  4. Allen GC, Spiker S, Thompson WF (2000) Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol Biol 43:361–376

    CAS  PubMed  Article  Google Scholar 

  5. Angstenberger M, de Signori F, Vecchi V, Dall'Osto L, Bassi R (2020) Cell synchronization enhances nuclear transformation and genome editing via Cas9 enabling homologous recombination in Chlamydomonas reinhardtii. ACS Synth Biol 9:2840–2850

    CAS  PubMed  Article  Google Scholar 

  6. Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46:36–44

    CAS  Article  Google Scholar 

  7. Anila N, Simon DP, Chandrashekar A, Ravishankar GA, Sarada R (2016) Metabolic engineering of Dunaliella salina for production of ketocarotenoids. Photosynth Res 127:321–333

    CAS  PubMed  Article  Google Scholar 

  8. Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364

    CAS  PubMed  Article  Google Scholar 

  9. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Baek K, Yu J, Jeong J, Sim SJ, Bae S, Jin ES (2018) Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol Bioeng 115:719–728

    CAS  PubMed  Article  Google Scholar 

  11. Baier T, Wichmann J, Kruse O, Lauersen KJ (2018) Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res 46:6909–6919

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O (2020) Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 16. https://doi.org/10.1371/JOURNAL.PGEN.1008944

  13. Barahimipour R, Neupert J, Bock R (2016) Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. Plant Mol Biol 90:403–418

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Barka F, Angstenberger M, Ahrendt T, Lorenzen W, Bode HB, Büchel C (2016) Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. Biochim Biophys Acta 1861:239–248

    CAS  PubMed  Article  Google Scholar 

  15. Bashir KMI, Kim M-S, Stahl U, Cho M-G (2018) Agrobacterium-mediated genetic transformation of Dictyosphaerium pulchellum for the expression of erythropoietin. J Appl Phycol 30:3503–3518

    CAS  Article  Google Scholar 

  16. Bertalan I, Munder MC, Weiß C, Kopf J, Fischer D, Johanningmeier U (2015) A rapid, modular and marker-free chloroplast expression system for the green alga Chlamydomonas reinhardtii. J Biotechnol 195:60–66

    CAS  PubMed  Article  Google Scholar 

  17. Bhattacharyya S, Pattanaik S, Maiti IB (2003) Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PClSV) promoter–leader and the antisense orientation of PClSV ORF VII (p7R). Planta 218:115–124

    CAS  PubMed  Article  Google Scholar 

  18. Blanc G, Duncan GA, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie J-M, Etten JLV (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Blanc G, Agarkova IV, Grimwood J, Kuo A, Brueggeman AJ, Dunigan D, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks DP, Yamada T, Lomsadze A, Borodovsky M, Claverie J-M, Grigoriev IV, Etten JLV (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:1–12

    Article  CAS  Google Scholar 

  20. Borovsky D, Sterner A, Powell CA (2016) Cloning and expressing trypsin modulating oostatic factor in Chlorella desiccata to control mosquito larvae. Arch Insect Biochem Physiol 91:17–36

    CAS  PubMed  Article  Google Scholar 

  21. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    CAS  PubMed  Article  Google Scholar 

  22. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    CAS  PubMed  Article  Google Scholar 

  23. Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11:2328–2332

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Bruggeman AJ, Kuehler D, Weeks DP (2014) Evaluation of three herbicide resistance genes for use in genetic transformations and for potential crop protection in algae production. Plant Biotechnol J 12:894–902

    CAS  Article  Google Scholar 

  25. Busi MV, Barchiesi J, Martín M, Gomez-Casati DF (2014) Starch metabolism in green algae. Starch-Starke 66:28–40

    CAS  Article  Google Scholar 

  26. Castejon N, Senorans FJ (2020) Enzymatic modification to produce health-promoting lipids from fish oil, algae and other new omega-3 sources: a review. Nat Biotechnol 57:45–54

    CAS  Google Scholar 

  27. Cha TS, Chen CF, Yee W, Aziz A, Loh SH (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434

    CAS  PubMed  Article  Google Scholar 

  28. Chang KS, Kim J, Park H, Hong S-J, Lee C-G, Jin E (2020) Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method. Bioresour Technol 303 doi:https://doi.org/10.1016/j.biortech.2020.122932

  29. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Coll JM (2006) Methodologies for transferring DNA into eukaryotic microalgae. Span J Agric Res:316–330

  31. Cong L, Ran FA, Cox DM, Lin S, Barretto RPJ, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Couso I, Vila M, Rodriguez H, Vargas MA, León R (2011) Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol Prog 27:54–60

    CAS  PubMed  Article  Google Scholar 

  33. Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N (2019) Alternative methods of vaccine delivery: an overview of edible and intradermal vaccines. J Immunol Res 2019:8303648

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Cui YL, Wang JF, Jiang P, Bian SG, Qin S (2010) Transformation of Platymonas (Tetraselmis) subcordiformis (Prasinophyceae, Chlorophyta) by agitation with glass beads. World J Microbiol Biotechnol 26:1653–1657

    CAS  Article  Google Scholar 

  35. Cui Y, Qin S, Jiang P (2014) Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PLoS One 9:e98607

  36. Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831–3837

    CAS  PubMed  Article  Google Scholar 

  37. Dauvillée D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d'Hulst C, Long CA, Ball SG, Tomavo S (2010) Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 5:e0015424

    Article  CAS  Google Scholar 

  38. Davis A, Crum LT, Corbeil LB, Hildebrand M (2017) Expression of Histophilus somni IbpA DR2 protective antigen in the diatom Thalassiosira pseudonana. Appl Microbiol Biot 101:5313–5324

    CAS  Article  Google Scholar 

  39. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    CAS  PubMed  Article  Google Scholar 

  40. Dehghani J, Adibkia K, Movafeghi A, Maleki-Kakelar H, Saeedi N, Omidi Y (2020) Towards a new avenue for producing therapeutic proteins: microalgae as a tempting green biofactory. Biotechnol Adv 40:107499

    CAS  PubMed  Article  Google Scholar 

  41. Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G (2013) A Chlamydomonas-derived human papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS One 8:e0061473

    Article  CAS  Google Scholar 

  42. Deng XD, Gu B, Li YJ, Hu XW, Guo JC, Fei XW (2012) The roles of acyl-CoA: diacylglycerol acyltransferase 2 genes in the biosynthesis of triacylglycerols by the green algae Chlamydomonas reinhardtii. Mol Plant 5:945–947

    CAS  PubMed  Article  Google Scholar 

  43. Dhokane D, Bhadra B, Dasgupta S (2020) CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein. Mol Biol Rep. https://doi.org/10.1007/s11033-020-05922-5

  44. Dong B, Cheng RQ, Liu QY, Wang J, Fan ZC (2018) Multimer of the antimicrobial peptide Mytichitin-a expressed in Chlamydomonas reinhardtii exerts a broader antibacterial spectrum and increased potency. J Biosci Bioeng 125:175–179

    CAS  PubMed  Article  Google Scholar 

  45. Dreesen IA, Charpin-El Hamri G, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol 145:273–280

    CAS  PubMed  Article  Google Scholar 

  46. Dunahay TG (1993) Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques 15:452-455, 457-458, 460

  47. Dünahay TG, Jarvis EE, Zeiler KG, Roessler PG, Brown LM (1992) Genetic engineering of microalgae for fuel production. Appl Biochem Biotechnol 34:331–339

    Article  Google Scholar 

  48. Dvir I, Chayoth R, Sod-Moriah U, Shany S, Nyska A, Stark AH, Madar Z, Arad SM (2000) Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. Br J Nutr 84:469–476

    CAS  PubMed  Article  Google Scholar 

  49. Dvir I, Stark AH, Chayoth R, Madar Z, Arad SM (2009) Hypocholesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp in rats. Nutrients 1:156–167

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Economou C, Wannathong T, Szaub J, Purton S (2014) A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Methods Mol Biol 1132:401–411

    CAS  PubMed  Article  Google Scholar 

  51. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229:873–883

    CAS  PubMed  Article  Google Scholar 

  52. Eilers U, Bikoulis A, Breitenbach J, Büchel C, Sandmann G (2016) Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. J Appl Phycol 28:123–129

    CAS  Article  Google Scholar 

  53. Endo H, Yoshida M, Uji T, Saga N, Inoue K, Nagasawa H (2016) Stable nuclear transformation system for the coccolithophorid alga Pleurochrysis carterae. Sci Rep 6:22252

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Fajardo C, Donato M, Carrasco R, Martínez-Rodríguez G, Mancera JM, Fernández-Acero FJ (2019) Advances and challenges in genetic engineering of microalgae. Rev Aquac 12:365–381

    Article  Google Scholar 

  55. Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang J-S (2020) Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol Adv:107554

  56. Feng S, Feng W, Zhao L, Gu H, Li Q, Shi K, Guo S, Zhang N (2014) Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch Virol 159:519–525

    CAS  PubMed  Article  Google Scholar 

  57. Ferenczi A, Pyott DE, Xipnitou A, Molnar A (2017) Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc Natl Acad Sci U S A 114:13567–13572

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Galarza JI, Gimpel JA, Rojas V, Arredondo-Vega BO, Henríquez V (2018) Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Res 31:291–297

    Article  Google Scholar 

  59. Gallaher SD, Fitz-Gibbon ST, Strenkert D, Purvine SO, Pellegrini M, Merchant SS (2018) High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. Plant J 93:545–565

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Gan Q, Jiang J, Han X, Wang S, Lu Y (2018) Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanica. Front Plant Sci 9:439

    PubMed  PubMed Central  Article  Google Scholar 

  61. Gardeva E, Toshkova R, Minkova K, Gigova L (2009) Cancer protective action of polysaccharide, derived from red microalga Porphyridium cruentum—a biological background. Biotechnol Biotechnol Equip 23:783–787

    Article  Google Scholar 

  62. Gargouri M, Park JJ, Holguin FO, Kim MJ, Wang H, Deshpande RR, Shachar-Hill Y, Hicks LM, Gang DR (2015) Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii. J Exp Bot 66:4551–4566

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Geng D, Wang Y, Wang P, Li W, Sun Y (2003) Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456

    CAS  Article  Google Scholar 

  65. Gomma AE, Lee S-K, Sun SM, Yang SH, Chung G (2015) Improvement in oil production by increasing malonyl-CoA and glycerol-3-phosphate pools in Scenedesmus quadricauda. Indian J Microbiol 55:447–455

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34:1396–1412

    CAS  PubMed  Article  Google Scholar 

  67. Gourdon D, Lin Q, Oroudjev E, Hansma H, Golan Y, Arad S, Israelachvili J (2008) Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide. Langmuir 24:1534–1540

    CAS  PubMed  Article  Google Scholar 

  68. Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S (2012) Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS One 7:e0037179

    Google Scholar 

  69. Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29:2498–2518

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Gunasekaran B, Gothandam KM (2020) A review on edible vaccines and their prospects. Braz J Med Biol Res:53. https://doi.org/10.1590/1414-431X20198749

  71. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    CAS  PubMed  Article  Google Scholar 

  72. Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Hanschen ER, Starkenburg SR (2020) The state of algal genome quality and diversity. Algal Res 50. https://doi.org/10.1016/j.algal.2020.101968

  74. Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38:335–341

    CAS  PubMed  Article  Google Scholar 

  75. He D-M, Qian K-X, Shen G-F, Zhang Z-F, Li Y-N, Su Z-L, Shao H-B (2007) Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf B 55:26–30

    CAS  Article  Google Scholar 

  76. Heitzer M, Eckert A, Fuhrmann M, Griesbeck C (2007) Influence of codon bias on the expression of foreign genes in microalgae. Adv Exp Med Biol 616:46–53

    PubMed  Article  Google Scholar 

  77. Hempel F, Lau J, Klingl A, Maier UG (2011) Algae as protein factories: expression of a human antibody and the respective antigen in the diatom Phaeodactylum tricornutum. PLoS One 6:e0028424

    Google Scholar 

  78. Hiramatsu T, Misumi O, Kuroiwa T, Nakamura S (2006) Morphological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. J Phycol 42:1048–1058

    Article  Google Scholar 

  79. Hu Z, Zhao Z, Wu Z, Fan Z, Chen J, Wu J, Li J (2011) Successful expression of heterologous egfp gene in the mitochondria of a photosynthetic eukaryote Chlamydomonas reinhardtii. Mitochondrion 11:716–721

    CAS  PubMed  Article  Google Scholar 

  80. Hu ZL, Fan Z, Zhao ZL, Chen J, Li JC (2012) Stable expression of antibiotic-resistant gene ble from Streptoalloteichus hindustanus in the mitochondria of Chlamydomonas reinhardtii. PLoS One 7:e0035542

    Google Scholar 

  81. Ibáñez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramírez-Alonso JI, Lara-Hernández I, Hernández-Torres A, Paz-Maldonado LMT, Silva-Ramírez AS, Bañuelos-Hernández B, Martínez-Salgado JL, Soria-Guerra RE (2014) Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol 184:27–38

    PubMed  Article  CAS  Google Scholar 

  82. Jaeger LD, Verbeek RE, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH (2014) Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol Biofuels 7:69–69

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Jarvis EE, Brown LM (1991) Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 19:317–321

    CAS  Article  Google Scholar 

  84. Jia X-H, Zhang C-L, Shi D-J, Zhuang M-M, Wang X, Jia R, Zhang Z-Y, Huang J, Sun Y-H, Qian W-Y, Peng G-H, He P-M (2016) Oral administration of Anabaena-expressed VP28 for both drug and food against white spot syndrome virus in shrimp. J Appl Phycol 28:1001–1009

    CAS  Article  Google Scholar 

  85. Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465–1469

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. Jiang JP, Yao CH, Cao XP, Liu YH, Xue S (2017) Characterization of starch phosphorylase from the marine green microalga (Chlorophyta) Tetraselmis subcordiformis reveals its potential role in starch biosynthesis. J Plant Phycol 218:84–93

    CAS  Article  Google Scholar 

  87. Jin E, Polle JEW, Melis A (2001) Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. Biochim Biophys Acta 1506:244–259

    CAS  PubMed  Article  Google Scholar 

  88. Kadono T, Kira N, Suzuki K, Iwata O, Ohama T, Okada S, Nishimura T, Akakabe M, Tsuda M, Adachi M (2015) Effect of an introduced phytoene synthase gene expression on carotenoid biosynthesis in the marine diatom Phaeodactylum tricornutum. Mar Drugs 13:5334–5357

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H (2015) Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 10:e0120446

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. Kang NK, Jeon S, Kwon S, Koh HG, Shin S-E, Lee B, Choi G-G, Yang J-W, B-r J, Chang YK (2015) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200–200

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. Kang NK, Kim EK, Kim YU, Lee B, Jeong W-J, Jeong B-R, Chang YK (2017) Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol Biofuels 10:1–14

    Article  CAS  Google Scholar 

  92. Kao P-H, Ng IS (2017) CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour Technol 245:1527–1537

    CAS  PubMed  Article  Google Scholar 

  93. Karas BJ, Diner RE, Lefebvre SC, McQuaid J, Phillips AP, Noddings CM, Brunson JK, Valas RE, Deerinck TJ, Jablanovic J, Gillard JT, Beeri K, Ellisman MH, Glass JI, Hutchison CA 3rd, Smith HO, Venter JC, Allen AE, Dupont CL, Weyman PD (2015) Designer diatom episomes delivered by bacterial conjugation. Nat Commun 6:6925

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Kasai Y, Harayama S (2016) Construction of marker-free transgenic strains of Chlamydomonas reinhardtii using a Cre/loxP-mediated recombinase system. PLoS One 11:e0161733

  95. Kaye Y, Grundman O, Leu S, Zarka A, Zorin B, Didi-Cohen S, Khozin-Goldberg I, Boussiba S (2015) Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal research biomass biofuels and bioproducts Algal Res 11:387–398

    Google Scholar 

  96. Khatiwada B, Kautto L, Sunna A, Sun A, Nevalainen H (2019) Nuclear transformation of the versatile microalga Euglena gracilis. Algal Res 37:178–185

    Article  Google Scholar 

  97. Khozin-Goldberg I (2016) Lipid metabolism in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 413–484

    Google Scholar 

  98. Kiataramgul A, Maneenin S, Purton S, Areechon N, Hirono I, Brocklehurst TW, Unajak S (2020) An oral delivery system for controlling white spot syndrome virus infection in shrimp using transgenic microalgae. Aquaculture 521

  99. Kilian O, Benemann C, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga, Nannochloropsis. Proc Natl Acad Sci U S A 108:21265–21269

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73

    CAS  Article  Google Scholar 

  102. Kim J, Kwak HS, Sim SJ, Jin ES (2019) Overexpression of malic enzyme isoform 2 in Chlamydomonas reinhardtii PTS42 increases lipid production. Bioresour Technol Rep 7:100239

    Article  Google Scholar 

  103. Kim J, Lee S, Baek K, Jin E (2020) Site-specific gene knock-out and on-site heterologous gene overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-mediated knock-in method. Front Plant Sci 11. https://doi.org/10.3389/FPLS.2020.00306

  104. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Kindle KL, Schnell RA, Fernández E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601

    CAS  PubMed  Article  Google Scholar 

  106. Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 37:657–666

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Kong F, Yamasaki T, Kurniasih SD, Hou L, Li X, Ivanova N, Okada S, Ohama T (2015) Robust expression of heterologous genes by selection marker fusion system in improved Chlamydomonas strains. J Biosci Bioeng 120:239–245

    CAS  PubMed  Article  Google Scholar 

  108. Kong F, Liang Y, Légeret B, Beyly-Adriano A, Blangy S, Haslam RP, Napier JA, Beisson F, Peltier G, Li-Beisson Y (2017) Chlamydomonas carries out fatty acid β-oxidation in ancestral peroxisomes using a bona fide acyl-CoA oxidase. Plant J 90:358–371

    CAS  PubMed  Article  Google Scholar 

  109. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    CAS  Article  Google Scholar 

  110. Kumar A, Falcao VR, Sayre RT (2013) Evaluating nuclear transgene expression systems in Chlamydomonas reinhardtii. Algal Res 2:321–332

    CAS  Article  Google Scholar 

  111. Kumar A, Perrine Z, Stroff C, Postier BL, Coury DA, Sayre RT, Thomas Allnutt FC (2016) Molecular tools for bioengineering eukaryotic microalgae. Curr Biotechnol 5:93–108

    CAS  Article  Google Scholar 

  112. Kumari S, Vira C, Lali AM, Prakash G (2020) Heterologous expression of a mutant Orange gene from Brassica oleracea increases carotenoids and induces phenotypic changes in the microalga Chlamydomonas reinhardtii. Algal Res 47:101871

    Article  Google Scholar 

  113. Kurita T, Moroi K, Iwai M, Okazaki K, Shimizu S, Nomura S, Saito F, Maeda S, Takami A, Sakamoto A, Ohta H, Sakuma T, Yamamoto T (2020) Efficient and multiplexable genome editing using Platinum TALENs in oleaginous microalga, Nannochloropsis oceanica NIES-2145. Genes Cells 25:695–702

    CAS  PubMed  Article  Google Scholar 

  114. Kurniasih SD, Yamasaki T, Kong F, Okada S, Widyaningrum D, Ohama T (2016) UV-mediated Chlamydomonas mutants with enhanced nuclear transgene expression by disruption of DNA methylation-dependent and independent silencing systems. Plant Mol Biol 92:629–641

    CAS  PubMed  Article  Google Scholar 

  115. Kwon K-C, Verma D, Singh ND, Herzog R, Daniell H (2013) Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 65:782–799

    CAS  PubMed  Article  Google Scholar 

  116. Kwon S, Kang NK, Koh HG, Shin S-E, Lee B, Jeong B-R, Chang YK (2018a) Enhancement of biomass and lipid productivity by overexpression of a bZIP transcription factor in Nannochloropsis salina. Biotechnol Bioeng 115:331–340

    CAS  PubMed  Article  Google Scholar 

  117. Kwon YM, Kim KW, Choi T-Y, Kim SY, Kim JYH (2018) Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World J Microbiol Biotechnol 34:183

    PubMed  Article  Google Scholar 

  118. Kwon KC, Lamb A, Fox D, Porphy Jegathese SJ (2019) An evaluation of microalgae as a recombinant protein oral delivery platform for fish using green fluorescent protein (GFP). Fish Shellfish Immunol 87:414–420

    CAS  PubMed  Article  Google Scholar 

  119. Kyriakopoulou K, Papadaki S, Krokida M (2015) Life cycle analysis of β-carotene extraction techniques. J Food Eng 167:51–58

    CAS  Article  Google Scholar 

  120. Lao YM, Xiao L, Luo LX, Jiang JG (2014) Hypoosmotic expression of Dunaliella bardawil ζ-carotene desaturase is attributed to a hypoosmolarity-responsive element different from other key carotenogenic genes. Plant Physiol 165:359–372

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. León R, Couso I, Fernández E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J Biotechnol 130:143–152

    PubMed  Article  CAS  Google Scholar 

  122. Li Z, Bock R (2018) Replication of bacterial plasmids in the nucleus of the red alga Porphyridium purpureum. Nat Commun 9:3451

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. Li YT, Han DX, Hu GR, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010a) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12:387–391

    PubMed  Article  CAS  Google Scholar 

  124. Li YT, Han DX, Hu GR, Sommerfeld M, Hu Q (2010b) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    CAS  PubMed  Article  Google Scholar 

  125. Li DW, Cen SY, Liu YH, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 229:65–71

    CAS  PubMed  Article  Google Scholar 

  126. Li S, Ji L, Shi Q, Wu H, Fan J (2019) Advances in the production of bioactive substances from marine unicellular microalgae Porphyridium spp. Bioresour Technol 292:122048

    CAS  PubMed  Article  Google Scholar 

  127. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    CAS  PubMed  Article  Google Scholar 

  128. Liu J, Gerken H, Huang J, Chen F (2013a) Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochem 48:788–795

    CAS  Article  Google Scholar 

  129. Liu L, Wang Y, Zhang Y, Chen X, Zhang P, Ma S (2013b) Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol Biotechnol 54:211–219

    CAS  PubMed  Article  Google Scholar 

  130. Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 98:5069–5079

    CAS  PubMed  Article  Google Scholar 

  131. Liu J, Sun Z, Mao X, Gerken H, Wang X, Yang W (2019) Multiomics analysis reveals a distinct mechanism of oleaginousness in the emerging model alga Chromochloris zofingiensis. Plant J 98:1060–1077

    CAS  PubMed  Article  Google Scholar 

  132. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    CAS  Article  Google Scholar 

  133. Ma YH, Wang X, Niu Y-F, Yang ZK, Zhang MH, Wang ZM, Yang WD, Liu JS, Li HY (2014) Antisense knockdown of pyruvate dehydrogenase kinase promotes the neutral lipid accumulation in the diatom Phaeodactylum tricornutum. Microb Cell Factories 13:100–100

    Google Scholar 

  134. Manandhar-Shrestha K, Hildebrand M (2015) Characterization and manipulation of a DGAT2 from the diatom Thalassiosira pseudonana: improved TAG accumulation without detriment to growth, and implications for chloroplast TAG accumulation. Algal Res 12:239–248

    Article  Google Scholar 

  135. Marquez-Escobar VA, Banuelos-Hernandez B, Rosales-Mendoza S (2018) Expression of a Zika virus antigen in microalgae: towards mucosal vaccine development. J Biotechnol 282:86–91

    CAS  PubMed  Article  Google Scholar 

  136. Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832

    CAS  PubMed  Article  Google Scholar 

  137. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100:438–442

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM (2018) An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Res 29:41–48

    Article  Google Scholar 

  139. Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24

    Article  Google Scholar 

  140. Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671

    CAS  PubMed  Article  Google Scholar 

  141. Mizutani O, Masaki K, Gomi K, Iefuji H (2012) Modified Cre-loxP recombination in Aspergillus oryzae by direct introduction of Cre recombinase for marker gene rescue. Appl Environ Microbiol 78:4126–4133

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. Mohammed A, Ali M, Kawasaki T, Yamada T (2007) Characterization of a chitinase gene encoded by virus-sensitive Chlorella strains and expressed during virus infection. Arab J Biotech 10:81–96

    Google Scholar 

  143. Molina-Márquez A, Vila M, Rengel R, Fernández E, García-Maroto F, Vigara J, León R (2020) Validation of a new multicistronic plasmid for the efficient and stable expression of transgenes in microalgae. Int J Mol Sci 21:718–732

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  144. Morikawa T, Uraguchi Y, Sanda S, Nakagawa S, Sawayama S (2018) Overexpression of DnaJ-like chaperone enhances carotenoid synthesis in Chlamydomonas reinhardtii. Appl Biochem Biotechnol 184:80–91

    CAS  PubMed  Article  Google Scholar 

  145. Muñoz CF, Sturme MHJ, D'Adamo S, Weusthuis RA, Wijffels RH (2019) Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E coli conjugation. Algal Res:39. https://doi.org/10.1016/j.algal.2019.101453

  146. Naduthodi MIS, Mohanraju P, Südfeld C, D’Adamo S, Barbosa MJ, Jvd O (2019) CRISPR-Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. Biotechnol Biofuels 12:1–11

    Article  Google Scholar 

  147. Ng IS, Tan SI, Kao PH, Chang YK, Chang JS (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J 12:e1600644

  148. Ng IS, Keskin BB, Tan SI (2020) A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria. Biotechnol J 12:e1600644

    Article  CAS  Google Scholar 

  149. Niu YF, Zhang MH, Xie WH, Li JN, Gao YF, Yang WD, Liu JS, Li HY (2011) A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet Mol Res 10:3427–3434

    CAS  PubMed  Article  Google Scholar 

  150. Niu YF, Yang ZK, Zhang MH, Zhu CC, Yang WD, Liu JS, Li HY (2012) Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker. Biotechniques 52:1–3

    Google Scholar 

  151. Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951–24951

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. Ohta S, Nakagawara S, Hirai S, Miyagishima K, Horiguchi G, Kodama H (2018) The 5′ UTR intron-mediated enhancement of constitutive splicing of the tobacco microsome ω-3 fatty acid desaturase gene. Plant Biotechnol Rep 12:105–114

    Article  Google Scholar 

  153. Park S, Nguyen THT, Jin E (2019) Improving lipid production by strain development in microalgae: strategies, challenges and perspectives. Bioresour Technol 292:121953

    CAS  PubMed  Article  Google Scholar 

  154. Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Wb B, Li HY (2014) Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem 62:8773–8776

    CAS  PubMed  Article  Google Scholar 

  155. Periz G, Keller LR (1997) DNA elements regulating alpha1-tubulin gene induction during regeneration of eukaryotic flagella. Mol Cell Biol 17:3858

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. Perozeni F, Cazzaniga S, Baier T, Zanoni F, Zoccatelli G, Lauersen KJ, Wobbe L, Ballottari M (2020) Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Plant Biotechnol J:1–15

  157. Picariello T, Hou Y, Kubo T, McNeill NA, Yanagisawa HA, Oda T, Witman GB (2020) TIM, a targeted insertional mutagenesis method utilizing CRISPR/Cas9 in Chlamydomonas reinhardtii. PLoS One 15:e0232594

  158. Poliner E, Pulman JA, Zienkiewicz K, Childs K, Benning C, Farré EM (2018) A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant Biotechnol J 16:298–309

    CAS  PubMed  Article  Google Scholar 

  159. Porse H, Bixler R (2017) The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. J Appl Phycol 29:2187–2200

    Article  Google Scholar 

  160. Pralhad Rathod J, M. Gade R, Rathod DR, Dudhare M (2017) A review on molecular tools of microalgal genetic transformation and their application for overexpression of different genes. Int J Curr Microbiol Appl Sci 6:3191–3207

    Article  CAS  Google Scholar 

  161. Prommuak C, Pavasant P, Quitain AT, Goto M, Shotipruk A (2013) Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chem Eng Technol 36:733–739

    CAS  Article  Google Scholar 

  162. Rakkhumkaew N, Kawasaki T, Fujie M, Yamada T (2013) Prolonged synthesis of hyaluronan by Chlorella cells infected with chloroviruses. J Biosci Bioeng 115:527–531

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259

    CAS  Article  Google Scholar 

  164. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239

    CAS  PubMed  Article  Google Scholar 

  165. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Rasala BA, Lee PA, Shen Z, Briggs SP, Mendez M, Mayfield SP (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7:e0043349

    Article  CAS  Google Scholar 

  167. Reiter Y, Wright AF, Tonge DW, Pastan I (1996) Recombinant single-chain and disulfide-stabilized Fv-immunotoxins that cause complete regression of a human colon cancer xenograft in nude mice. Int J Cancer 67:113–123

    CAS  PubMed  Article  Google Scholar 

  168. Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci U S A 103:4771

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. Rengel R, Smith RT, Haslam RP, Sayanova O, Vila M, León R (2018) Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res 31:183–193

    Article  Google Scholar 

  170. Roessler PG, Bleibaum JL, Thompson GA, Ohlrogge JB (1994) Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cyclotella cryptica. Ann N Y Acad Sci 721:250–256

    CAS  PubMed  Article  Google Scholar 

  171. Rossi F, De Philippis R (2016) Exocellular polysaccharides in microalgae and cyanobacteria: Chemical features, role and enzymes and genes involved in their biosynthesis. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 565–590

    Google Scholar 

  172. Sakaguchi T, Nakajima K, Matsuda Y (2011) Identification of the UMP synthase gene by establishment of uracil auxotrophic mutants and the phenotypic complementation system in the marine diatom Phaeodactylum tricornutum. Plant Physiol 156:78–89

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. Sakamoto H, Torada H, Goto K, Nakamura Y, Nakano T, Yamaguchi T, Sato M, Saito T, Taniguchi A, Yokoyama T, Kan-No N, Nagahisa E (2003) Biological activity of the polysaccharide produced by the marine phytoplankton Porphyridium sp. and additive effect of slag on the polysaccharide production. J Iron Steel Inst Jpn 89:475–481

    CAS  Article  Google Scholar 

  174. Sanitha M, Radha S, Fatima AA, Devi SG, Ramya M (2014) Agrobacterium-mediated transformation of three freshwater microalgal strains. Pol J Microbiol 63:387–392

    PubMed  Article  Google Scholar 

  175. Schroda M, Vallon O, Wollman F-A, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Schroda M, Blöcker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131

    CAS  PubMed  Article  Google Scholar 

  177. Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J 31:445–455

    CAS  PubMed  Article  Google Scholar 

  178. Scranton MA, Ostrand JT, Georgianna DR, Lofgren SM, Li D, Ellis RC, Carruthers DN, Dräger A, Masica DL, Mayfield SP (2016) Synthetic promoters capable of driving robust nuclear gene expression in the green alga Chlamydomonas reinhardtii. Algal Res 15:135–142

    Article  Google Scholar 

  179. Serif M, Lepetit B, Weißert K, Kroth PG, Rio Bartulos C (2017) A fast and reliable strategy to generate TALEN-mediated gene knockouts in the diatom Phaeodactylum tricornutum. Algal Res 23:186–195

    Article  Google Scholar 

  180. Serif M, Dubois G, Finoux A-L, Teste M-A, Jallet D, Daboussi F (2018) One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing. Nat Commun 9:3924

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  181. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  182. Shin YS, Jeong J, Nguyen THT, Kim JYH, Jin E, Sim SJ (2019) Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresour Technol 271:368–374

    CAS  PubMed  Article  Google Scholar 

  183. Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii : characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7–7

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. Simon DP, Anila N, Gayathri K, Sarada R (2016) Heterologous expression of β-carotene hydroxylase in Dunaliella salina by Agrobacterium -mediated genetic transformation. Algal Res 18:257–265

    Article  Google Scholar 

  185. Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73:873–882

    CAS  PubMed  Article  Google Scholar 

  186. Sodeinde OA, Kindle KL (1993) Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 90:9199–9203

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. Specht EA, Mayfield SP (2014) Algae-based oral recombinant vaccines. Front Microbiol 5:60

    PubMed  Google Scholar 

  188. Srinivasan R, Babu S, Gothandam KM (2017) Accumulation of phytoene, a colorless carotenoid by inhibition of phytoene desaturase (PDS) gene in Dunaliella salina V-101. Bioresour Technol 242:311–318

    CAS  PubMed  Article  Google Scholar 

  189. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  190. Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092

    CAS  PubMed  Article  Google Scholar 

  191. Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F (2018a) High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. Biotechnol Biofuels 11:254–254

    PubMed  PubMed Central  Article  Google Scholar 

  192. Sun T, Li S, Song X, Diao J, Chen L, Zhang W (2018b) Toolboxes for cyanobacteria: recent advances and future direction. Biotech Adv 36:1293–1307

    CAS  Article  Google Scholar 

  193. Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H (2019) Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochim Biophys Acta Mol Cell Biol Lipids 1864:552–566

    CAS  PubMed  Article  Google Scholar 

  194. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix J-D, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37:133–138

    CAS  PubMed  Article  Google Scholar 

  195. Takahashi K, Ide Y, Hayakawa J, Yoshimitsu Y, Fukuhara I, Abe J, Kasai Y, Harayama S (2018) Lipid productivity in TALEN-induced starchless mutants of the unicellular green alga Coccomyxa sp. strain Obi. Algal Res 32:300–307

    Article  Google Scholar 

  196. Talyshinsky MM, Souprun YY, Huleihel MM (2002) Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int 2:8–8

    PubMed  PubMed Central  Article  Google Scholar 

  197. Te MR, Lohuis, Miller DJ (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 13:427–435

    Article  Google Scholar 

  198. Teng C, Qin S, Liu J, Yu D, Liang C, Tseng C (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14:497–500

    CAS  Article  Google Scholar 

  199. Tran M, Henry RE, Siefker D, Van C, Newkirk G, Kim J, Bui J, Mayfield SP (2013) Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng 110:2826–2835

    CAS  PubMed  Article  Google Scholar 

  200. Tran Q-G, Cho K, Kim U, Yun J-H, D-h C, Heo J, Park S-B, Kim JW, Lee YJ, Ramanan R, Kim H-S (2019) Enhancement of β-carotene production by regulating the autophagy-carotenoid biosynthesis seesaw in Chlamydomonas reinhardtii. Bioresour Technol 292:121937

    CAS  PubMed  Article  Google Scholar 

  201. Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci U S A 110:19748–19753

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681–39681

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. Vanier G, Stelter S, Vanier J, Hempel F, Maier UG, Lerouge P, Ma J, Bardor M (2018) Alga-made anti-hepatitis B antibody binds to human Fcγ receptors. Biotechnol J 13:1700496

    Article  CAS  Google Scholar 

  204. Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145

    CAS  PubMed  Article  Google Scholar 

  205. Wang TY, Xue LX, Ji X, Wang YF (2007) Matrix attachment region increased reporter gene expression in stably transformed Dunaliella salina. Paper presented at the 2006 ASAE Annual Meeting, 2007-08-20

  206. Wang QT, Lu YD, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081

    CAS  PubMed  Article  Google Scholar 

  207. Wang X, Dong H-P, Wei W, Balamurugan S, Yang W-D, Liu J-S, Li H-Y (2018a) Dual expression of plastidial GPAT1 and LPAT1 regulates triacylglycerol production and the fatty acid profile in Phaeodactylum tricornutum. Biotechnol Biofuels 11:1–14

    Article  CAS  Google Scholar 

  208. Wang X, Wei W, Li N-J, Yuan W, Ding Y, Yang W-D, Liu J-S, Balamurugan S, Li H-Y (2018b) Heterogeneous expression of human PNPLA3 triggers algal lipid accumulation and lipid droplet enlargement. Algal Res 31:276–281

    Article  Google Scholar 

  209. Wang X, Wei H, Mao X, Liu J (2019) Proteomics analysis of lipid droplets from the oleaginous alga Chromochloris zofingiensis reveals novel proteins for lipid metabolism. Genom Proteom Bioinformat 17:260–272

    CAS  Article  Google Scholar 

  210. Wannathong T, Waterhouse JC, Young RE, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 100:5467–5477

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  211. Wei H, Shi Y, Ma X, Pan Y, Hu H, Li Y, Luo M, Gerken H, Liu J (2017a) A type-I diacylglycerol acyltransferase modulates triacylglycerol biosynthesis and fatty acid composition in the oleaginous microalga, Nannochloropsis oceanica. Biotechnol Biofuels 10:174

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  212. Wei L, Wang Q, Xin Y, Lu Y, Xu J (2017b) Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. Algal Res 27:366–375

    Article  Google Scholar 

  213. Weyman PD, Beeri K, Lefebvre SC, Rivera J, McCarthy JK, Heuberger AL, Peers G, Allen AE, Dupont CL (2015) Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol J 13:460–470

    CAS  PubMed  Article  Google Scholar 

  214. Wu J, Hu Z, Wang C, Li S, Lei A (2008) Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii. Chin J Oceanol Limnol 26:242–247

    CAS  Article  Google Scholar 

  215. Xin Y, Lu Y, Lee YY, Wei L, Jia J, Wang Q, Wang D, Bai F, Hu H, Hu Q, Liu J, Li Y, Xu J (2017) Producing designer oils in industrial microalgae by rational modulation of co-evolving type-2 diacylglycerol acyltransferases. Mol Plant 10:1523–1539

    CAS  PubMed  Article  Google Scholar 

  216. Xue J, Niu Y-F, Huang T, Yang W-D, Liu J-S, Li H-Y (2015) Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metab Eng 27:1–9

    PubMed  Article  CAS  Google Scholar 

  217. Xue J, Balamurugan S, Li D-W, Liu Y-H, Zeng H, Wang L, Yang W-D, Liu J-S, Li H-Y (2017) Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab Eng 41:212–221

    CAS  PubMed  Article  Google Scholar 

  218. Yan J, Cheng R, Lin X, You S, Li K, Rong H, Ma Y (2013) Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Appl Microbiol Biotechnol 97:1933–1939

    CAS  PubMed  Article  Google Scholar 

  219. Yan J, Kuang Y, Gui X, Han X, Yan Y (2019) Engineering a malic enzyme to enhance lipid accumulation in Chlorella protothecoides and direct production of biodiesel from the microalgal biomass. Biomass Bioenergy 122:298–304

    CAS  Article  Google Scholar 

  220. Yao Y, Lu Y, Peng K-T, Huang T, Niu Y-F, Xie W-H, Yang W-D, Liu J-S, Li H-Y (2014) Glycerol and neutral lipid production in the oleaginous marine diatom Phaeodactylum tricornutum promoted by overexpression of glycerol-3-phosphate dehydrogenase. Biotechnol Biofuels 7:110–119

    Article  CAS  Google Scholar 

  221. Yohn C, Mendez M, Behnke C, Brand A (2011) Stress-induced lipid trigger. European Patent EP2531600A1

  222. Yoshimitsu Y, Abe J, Harayama S (2018) Cas9-guide RNA ribonucleoprotein-induced genome editing in the industrial green alga Coccomyxa sp. strain KJ. Biotechnol Biofuels 11:326

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  223. Zäuner S, Jochum W, Bigorowski T, Benning C (2012) A cytochrome b5-containing plastid-located fatty acid desaturase from Chlamydomonas reinhardtii. Eukaryot Cell 11:856–863

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  224. Zhang J, Sun Z, Sun P, Chen T, Chen F (2014a) Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 5:413–425

    CAS  PubMed  Article  Google Scholar 

  225. Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC (2014b) High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26:1398–1409

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  226. Zhong QW, Wei B, Wang SJ, Ke SZ, Chen JW, Zhang HW, Wang H (2019) The antioxidant activity of polysaccharides derived from marine organisms: an overview. Mar Drugs 17:674

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  227. Zhou X, Zhang X, Boualavong J, Durney AR, Wang T, Kirschner S, Wentz M, Mukaibo H (2017) Electrokinetically controlled fluid injection into unicellular microalgae. Electrophoresis 38:2587–2591

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This work was sponsored by National Key Research and Development Project of China 2019YFA0906300 and 2020YFA0907304, Natural Science Foundation of Shandong Province ZR2019ZD17, National Natural Science Foundation of China 31872608, Natural Science Foundation of Shanghai 18ZR1410100, Funding Project of the State Key Laboratory of Bioreactor Engineering, and Open Funding Project of the State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University) 2019002.

Author information

Affiliations

Authors

Contributions

Jianhua Fan: conceptualization, project administration, supervision. Pengcheng Fu: project administration, supervision. Qianwen Shi: investigation, writing—original draft, writing—review and editing. Cheng Chen: investigation, writing—original draft, writing—review and editing. Wei Zhang: writing—original draft. Ping Wu: writing—original draft. Hui Wu: supervision. Haizhen Wu: supervision.

Corresponding authors

Correspondence to Pengcheng Fu or Jianhua Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Chen, C., Zhang, W. et al. Transgenic eukaryotic microalgae as green factories: providing new ideas for the production of biologically active substances. J Appl Phycol (2021). https://doi.org/10.1007/s10811-020-02350-7

Download citation

Keywords

  • Eukaryotic microalgae
  • Genetic engineering
  • Metabolism
  • Biopharmaceuticals production
  • Therapeutic proteins