Skip to main content
Log in

Molecular identification, growth, and reproduction of Colaconema daviesii (Rhodophyta; Colaconematales) endophyte of the edible red seaweed Chondracanthus chamissoi

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In this study we report for the first time the appearance of an endophytic filamentous red alga, living associated with the edible red seaweed Chondracanthus chamissoi. Molecular identification, growth, and reproduction of this endophyte are described under different conditions: photoperiod (8:16, 12:12, and 16:08 L:D), temperature (10 and 15 °C), and photon flux density (40 and 20 μmol photons m−2 s−1). Filaments of this endophyte were isolated and cultured, and the growth was recorded according to the number of branches and its reproduction, by quantifying the emergence of monosporangia. By sequencing the COI gene and through phylogeny reconstruction using maximum likelihood, we determined that this endophyte corresponded to Colaconema daviesii. The highest growth was recorded under the treatment 16:08 (L:D), 10 °C, and 20 μmol photons m−2 s−1, reaching up to 100 branches after 18 days. On the other hand, over 80% of filaments with monosporangia were observed at 12:12 (L:D), 10 °C, and 20 μmol photons m−2 s−1. This is the first record of C. daviesii on the South-eastern Pacific as an endophyte on thalli of C. chamissoi. The results of the in vitro cultures showed that once C. daviesii is isolated, the filaments are able to grow and reproduce independently of C. chamissoi. This suggests that there may not be a strict relationship between both algae and reveals the possibility of finding C. daviesii living without a host or associated with other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aduana (2018) Exportaciones de chicorea de mar en Chile, para consumo humano. Servicio Nacional de Aduana, Chile https://www.aduana.cl.

    Google Scholar 

  • Apt K (1984) Effects of the symbiotic red alga Hypneocolax stellaris on its host Hypneamu sciformis (Hypneaceae, Gigartinales). J Phycol 20:148–150

    Google Scholar 

  • Apt K (1988) Galls and tumor-like growth on marine macroalgae. Dis Aquat Org 3:211–217

    Google Scholar 

  • Araújo P, Schmidt E, Kreusch M, Kano C, Guimarães S, Bouzon Z (2014) Ultrastructural, morphological, and molecular characterization of Colaconema infestans (Colaconematales, Rhodophyta) and its host Kappaphycus alvarezii (Gigartinales, Rhodophyta) cultivated in the Brazilian tropical region. J Appl Phycol 26:19–53

    Google Scholar 

  • Ávila M, Piel M, Caceres J, Alveal K (2011) Cultivation of the red alga Chondracanthus chamissoi: sexual reproduction and seedling production in culture under controlled conditions. J Appl Phycol 23:529–536

    Google Scholar 

  • Bulboa C, Macchiavello J (2001) The effects of light and temperature on different phases of the life cycle in the carrageenan producing alga Chondracanthus chamissoi (Rhodophyta, Gigartinales). Bot Mar 44:371–374

    Google Scholar 

  • Bulboa C, Macchiavello J, Oliveira E, Fonck E (2005) First attempt to cultivate the carrageenan-producing seaweeds Chondracanthus chamissoi (C. Agardh) Kützing (Rhodophyta; Gigartinales) in northern Chile. Aquac Res 36:1069–1074

    Google Scholar 

  • Bulboa C, Macchiavello J (2006) Cultivation of cystocarpic, tetrasporic and vegetative fronds of Chondracanthus chamissoi (Rhodophyta, Gigartinales) on ropes at two localities in northern Chile. Invest Mar 34:109–112

    Google Scholar 

  • Bulboa C, Macchiavello J, Oliveira E, Véliz K (2008) Growth rate differences between four Chilean populations of edible seaweed Chondracanthus chamissoi (Rhodophyta, Gigartinales). Aquac Res 39:1550–1555

    Google Scholar 

  • Bulboa C, Macchiavello J, Véliz K, Oliveira E (2010) Germination rate and sporeling development of Chondracanthus chamissoi (Rhodophyta, Gigartinales) varies along a latitudinal gradient on the coast of Chile. Aquat Bot 92:137–114

    Google Scholar 

  • Bulboa C, Véliz K, Sáez F, Sepúlveda C, Vega L, Macchiavello J (2013) A new method for cultivation of the carragenophyte and edible red seaweed Chondracanthus chamissoi based on secondary attachment disc: development in outdoor tanks. Aquaculture 410-411:86–94

    Google Scholar 

  • Bulboa C, Massad I, Contreras-Porcia L, Zapata J, Catañeda F, Ramírez M (2020) Concise review of genus Chondracanthus (Rhodophyta: Gigartinales). J Appl Phycol 32:773–785

  • Buschmann A, Gómez P (1993) Interaction mechanisms between Gracilaria chilensis (Rhodophyta) and epiphytes. Hidrobiologia 261:345–335

    Google Scholar 

  • Correa J, Nielsen R, Grund D (1988) Endophytic algae of Chondrus Crispus (Rhodophyta). II. Acrochaete heteroclada sp. nov., A. operculata sp. nov, and Pharophila dendroides (Chlorophyta). J Phycol 24:528–539

    Google Scholar 

  • Correa J (1990) Pigmented algal endophytes of Chondrus crispus Stackhouse: host-specificity, fine structure and effects on host performance in infections by Acrochaete operculata Correa & Nielsen and A. heteroclada Correa & Nielsen. PhD dissertation, Dalhousie University, Canada

  • Correa J, Mclachlan J (1992) Endophytic algae of Chondrus crispus (Rhodophyta). IV. Effects on the host following infections by Acrochaete operculata and A. heteroclada (Chlorophyta). Mar Ecol Prog Ser 81:73–87

    Google Scholar 

  • Correa J (1994) Infections by pigmented algal endophytes: misuse of concepts and terminology. Rev Chil Hist Nat 67:4–8

    Google Scholar 

  • Correa J, Buschmann A, Retamales C, Beltran J (1997) Infectious disease of Mazzaella laminarioides (Rhodophyta): changes in infection prevalence and disease expression associated with latitude, season and within site location. J Phycol 33:344–352

  • Eggert A, Peters A, Küpper F (2010) The potential impact of climate change on endophyte infections in kelp sporophytes. In: Seckbach J (ed) Seaweeds and their role in globally changing environments. Springer, Dordrecht, pp 139–154

  • Faugeron S, Martínez E, Sánchez P, Correa J (2000) Infectious diseases in Mazzaella laminarioides (Rhodophyta): estimating the effect of infections on host reproductive potential. Dis Aquat Org 42:143–148

  • Faugeron S, Valero M, Destombe C, Martinez E, Correa J (2001) Hierarchical spatial structure and discriminant analysis of genetic diversity in the red alga Mazzaella laminarioides (Gigartinales, Gigartinales, Rhodophyta). J Appl Phycol 37:705–716

  • García V, Bárbara I, Días P (2017) Las praderas de Zostera marina del Parque Nacional Marítimo Terrestre de las Islas Atlánticas de Galicia y territorios adyacentes: distribución, abundancia y flora asociada. NACC. Bioloxía 24:1–12

  • Gauna M, Parodi E (2010) Green epi- endophyte in Hymenena falklandica (Rhodophyta) from the Patagonia coasts of Argentina: preliminary observations. Phycol Res 56:144–1835

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

  • Hansen G, Hanyuda T, Kawai H (2017) Benthic marine algae on Japanese tsunami marine debris – a morphological documentation of the species. Part 1. The tsunami event, the project overview, and the red algae. OSU scholars archive, Corvallis, pp 1-50

  • Harper J, Saunders G (2002) A re-classification of the Acrochaetiales based on molecular and morphological data, and establishment of the Colaconematales Ord. Florideophyceae Rhodophyta. Eur J Phycol 37:463–476

    Google Scholar 

  • Hayashi L, Bulboa C, Kradolfer P, Soriano G, Robledo D (2014) Cultivation of red seaweeds: a Latin American perspective. J Appl Phycol 26:719–727

    Google Scholar 

  • Kim C, Kim Y, Choi H, Nam K (2014) New records of three endophytic green algae from Grateloupia spp. (Rhodophyta) in Korea. Algae 29:127–136

    CAS  Google Scholar 

  • Lam D, Verbruggen H, Saunders G, Vis M (2016) Multigene phylogeny of the red algal subclass Nemaliophycidae. Mol Phylogenet Evol 94:730–736

    PubMed  Google Scholar 

  • Lein T, Sjatun K, Wakili S (1991) Mass-occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia 76:187–193

    Google Scholar 

  • López B (2017) Micropropagación y cultivo de la “Mota Lisa”, un morfotipo de Chondracanthus chamissoi (C Agardth) Kützing (Rhodophyta; Gigartinales). Dissertation, Master's thesis in marine biology, Universidad Andrés Bello, Chile

  • Macchiavello J, Sepúlveda C, Basaure H, Sáez F, Yañez D, Marín C, Vega L (2018) Suspended culture of Chondracanthus chamissoi (Rhodophyta: Gigartinales) in Caleta Hornos (northern Chile) via vegetative propagation with secondary attachment discs. J Appl Phycol 30:1149–1155

    Google Scholar 

  • Montoya V (2019) Colaconema daviesii (Rhodophyta; Colaconematales) una endófita del alga comercial Chondracanthus chamissoi. Dissertation, undergraduate thesis in marine biology, Universidad Andrés bello, Chile

  • Nielsen R (1979) Culture studies on the type species of Acrochaete, bolbocoleon and Entodadia (Chaetophoraceae, Chlorophyceae). Bot Not 132:441–449

    Google Scholar 

  • Nguyen L, Schmidt H, Haeseler A, Minh B (2015) IQ-THREE: a fast and effectives stochastic algorithm for estimating maximum- likelihood phylogenies. Mol Biol Evol 32:268–274

    CAS  PubMed  Google Scholar 

  • Ogandaga C, Choil H, Jang K, Wan K (2016) Growth responses of Chondrus ocellatus Holmes (Gigartinales, Rhodophyta) to two endophyte, Mikrosyphar zostera Kuckuck (Ectocarpales, Ochrophyta) and Ulvella ramosa (N. L Gardner) R. Nielsen (Ulvales, Chlorophyta) in culture. Algae 31:363–371

    CAS  Google Scholar 

  • Otaiza R, Abades S, Brante A (2001) Seasonal changes in abundance and shifts in dominance of life history stages of the carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) in south-Central Chile. J Appl Phycol 13:161–171

    Google Scholar 

  • Parker T, Chapman A (1994) Separating the grazing effects of periwinkles and amphipods on a seaweed community dominated by Fucus distichus. Ophelia 39:75–91

    Google Scholar 

  • Potin P (2012) Intimate associations between epiphytes, endophytes, and parasites of seaweeds. In: Wiencke and Bischof (Eds) seaweed biology. Springer, Berlin pp, pp 203–234

    Google Scholar 

  • Poza M, Gauna C, Escobar J, Parodi E (2017) Temporal dynamics of algal epiphytes on Leathesia marina and Colpomenia sinuosa macrothalli (Phaeophyceae). Mar Biol Res 14:65–75

    Google Scholar 

  • Preuss M, Zuccarello G (2014) What’s in a name? Monophyly of genera in the red algae: Rhodophyllis parasitica sp. nov. (Gigartinales, Rhodophyta); a new red algal parasite from New Zealand. Algae 29:279–288

    CAS  Google Scholar 

  • R Core Team (2019) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • Ramírez C, Bulboa C, Contreras L, Mora A (2018) Flora Marina Bentónica de Quintay. Santiago, Ril Editores 164 pp

  • Rawlence D, Taylor A (1972) A light and electron microscopic study of rhizoid development in Polysiphonia lanosa (L.) Tandy. J Phycol 8:15–24

    Google Scholar 

  • Robba L, Russell S, Barker G, Brodie J (2006) Assessing the use of the mitochondrial cox 1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 2006:1101–1108

    Google Scholar 

  • Saunders GW (1993) Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction-friendly DNA. J Appl Phycol 29:251–254

    CAS  Google Scholar 

  • Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Trans R Soc Lond B 360:1879–1888

    CAS  Google Scholar 

  • Scott F, Saunders G, Kraft G (2013) Entwisleia bella, gen. Et sp. nov., a novel marine ‘batrachospermaceous’ red alga from southeastern Tasmania representing a new family and order in the Nemaliophycidae. Eur J Phycol 48:398–410

    Google Scholar 

  • Sherwood AR (2008) Phylogeography of Asparagopsis taxiformis (Bonnemaisoniales, Rhodophyta) in the Hawaiian islands: two mtDNA markers support three separate introductions. Phycologia 47:79–88

  • Schoenrock K, Amsler C, McClintock J, Baker B (2013) Endophytic presence as a potential stressor on growth and survival in Antarctic macroalgal hosts. Phycologia 52:595–599

    Google Scholar 

  • Tamura K, Peterson N, Stecher G, Neisudhir M (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:10

    Google Scholar 

  • Trifinopoulos J, Nguyen L, Haesele A, Quang B (2016) W-IQ-tree: a fast-online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:232–235

    Google Scholar 

  • Turner C, Evans L (1977) Physiological studies on the relationship between Ascophyllum nodosum and Polysiphonia lanosa. New Phytol 79:363–371

    CAS  Google Scholar 

  • Vairappan C, Chung C, Matsunaga S (2014) Effect of epiphytes infection on physical and chemical properties of carrageenan produced by Kappaphycus alvarezii Doty (Soliericeae, Gigartinales, Rhodophyta). J Appl Phycol 26:923–993

    Google Scholar 

  • Vásquez J, Vega J (2001) Chondracanthus chamissoi (Rhodophyta, Gigartinales) in northern Chile: ecological aspects for management of wild populations. J Appl Phycol 13:267–277

    Google Scholar 

  • Vega J, Meneses I (2001) Seasonal and spatial monitoring of productivity and of reproduction of Chondrus canaliculatus (Gigartinales, Rhodophyta) from Chile. Bot Mar 44:571–581

    Google Scholar 

  • Weinberger F, Friedlander M, Gunkel W (1994) A bacterial facultative parasite of Gracilaria conferta. Dis Aquat Org 18:135–141

    Google Scholar 

  • Wickham H (2016) ggplot2 elegant graphics for data analysis. Springer, New York https://ggplot2.tidyverse.org

    Google Scholar 

  • Yang M, Geraldino P, Kim M (2013) DNA barcode assessment of Gracilaria salicornia (Gracilariaceae, Rhodophyta) from Southeast Asia. Bot Stud 54:27

    PubMed  PubMed Central  Google Scholar 

  • Yang M, Macaya E, Kim M (2015) Molecular evidence for verifying the distribution of Chondracanthus chamissoi and C. teedei (Gigartinaceae, Rhodophyta). Bot Mar 58:103–113

    Google Scholar 

  • Yoshida T, Akiyama K (1979) Streblonema () infection in the frond of cultivated Undaria (Phaeophyceae). In: Jensen A, Stein JR (eds) Proceedings of the IXth International Seaweed Symposium. Princeton, Science Press, pp 219–223

Download references

Acknowledgments

Montoya V. thanks to Universidad Andrés Bello for the grant 2018-2 (AAP 2018-2). CB thanks FONDEF ID15I10320 and LC FONDECYT 1170881. We appreciate the support of Quintay Marine Research Center–CIMARQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Bulboa Contador.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 27 kb)

ESM 2

(XLS 52 kb)

ESM 3

(XLS 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoya, V., Meynard, A., Contreras-Porcia, L. et al. Molecular identification, growth, and reproduction of Colaconema daviesii (Rhodophyta; Colaconematales) endophyte of the edible red seaweed Chondracanthus chamissoi. J Appl Phycol 32, 3533–3542 (2020). https://doi.org/10.1007/s10811-020-02176-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02176-3

Keywords

Navigation