Potential microalgal strains for converting flue gas CO2 into biomass

Abstract

A screening method using 15% CO2 (v/v) as screening stress and a spotting plate method was developed to isolate microalgae with the potential to convert flue gas CO2 to biomass. A total of six microalgal strains, belonging to the genera Chlorella, Heynigia, Desmodesmus, and Scenedesmus, were isolated from ponds near metallurgical/cement/power plants. The growth of these isolated strains was dramatically promoted at 5 to 15% CO2 when they were cultivated in bubble column photobioreactors aerating with 0.03%, 5%, 10%, and 15% CO2. The growth of Heynigia riparia SX01 in particular showed substantial improvement with the increase of CO2 concentrations from 5 to 15%. Furthermore, the maximum biomass, overall biomass productivity, maximum biomass productivity, and maximum CO2 fixation rate of these microalgal strains greatly increased at 5 to 15% CO2 as well. Chlorella sorokiniana GS03 showed the highest values in maximum biomass productivity (0.36 g L−1 day−1) and maximum CO2 fixation rate (0.66 g L−1 day−1) at 5% CO2. Heynigia riparia SX01 exhibited the highest values of maximum biomass (3.28 g L−1), overall biomass productivity (0.27 g L−1 day−1), maximum biomass productivity (0.39 g L−1 day−1), and maximum CO2 fixation rate (0.71 g L−1 day−1) at 15% CO2. This study provides not only an efficient screening method obtaining microalgae with wide CO2 tolerance but also microalgal strains utilizing high levels of CO2 up to 15% to produce biomass, which contributes to further exploration in converting real flue gas CO2 into biomass feedstock.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adamczyk M, Lasek J, Skawinska A (2016) CO2 biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Appl Biochem Biotechnol 179:1248–1261

    CAS  Article  Google Scholar 

  2. Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G (2013) Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol 139:149–154

    CAS  Article  Google Scholar 

  3. Aslam A, Thomas-Hall SR, Mughal TA, Schenk PM (2017) Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresour Technol 233:271–283

    CAS  Article  Google Scholar 

  4. Basu S, Roy AS, Mohantyc K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 143:369–377

    CAS  Article  Google Scholar 

  5. Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 89–90

    Google Scholar 

  6. Bodansky D (2010) The Copenhagen climate change conference-a post-mortem. Am J Int Law 104:230–240

    Article  Google Scholar 

  7. Cheah WY, Show PL, Chang JS, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201

    CAS  Article  Google Scholar 

  8. Cheng DJ, Li XY, Yuan YZ, Yang CY, Tang T, Zhao QY, Sun YH (2019) Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. Sci Total Environ 650:2931–2938

    CAS  Article  Google Scholar 

  9. Choix FJ, Ochoa-Becerra MA, Hsieh-Lo M, Mondragón-Cortez P, Méndez-Acosta HO (2018) High biomass production and CO2 fixation from biogas by Chlorella and Scenedesmus microalgae using tequila vinasses as culture medium. J Appl Phycol 30:2247–2258

    CAS  Article  Google Scholar 

  10. de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  Google Scholar 

  11. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185

    CAS  Article  Google Scholar 

  12. Duff RJ, Ball H, Lavrentyev PJ (2008) Application of combined morphological-molecular approaches to the identification of planktonic protists from environmental samples. J Eukaryot Microbiol 55:306–312

    Article  Google Scholar 

  13. Elmekawy A, Hegab HM, Mohanakrishna G, Elbaz AF, Bulut M, Pant D (2016) Technological advances in CO2 conversion electro-biorefinery: a step towards commercialization. Bioresour Technol 215:357–370

    CAS  Article  Google Scholar 

  14. Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  15. Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems-a review. Biotechnol Adv 29:189–198

    CAS  Article  Google Scholar 

  16. Jain D, Ghonse SS, Trivedi T, Fernandes GL, Menezes LD, Damare SR, Mamatha SS, Kumar S, Gupta V (2019) CO2 fixation and production of biodiesel by Chlorella vulgaris NIOCCV under mixotrophic cultivation. Bioresour Technol 273:672–676

    CAS  Article  Google Scholar 

  17. Jiang LL, Luo SJ, Fan XL, Yang ZM, Guo RB (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88:3336–3341

    CAS  Article  Google Scholar 

  18. Jiang YL, Zhang W, Wang JF, Chen Y, Shen SH, Liu TZ (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    CAS  Article  Google Scholar 

  19. Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129

    Article  Google Scholar 

  20. Kuhl A, Lorenzen H (1964) Handling and culturing of Chlorella. In: Prescott DM (ed) Methods in cell physiology, vol 1. Academic, New York and London, pp 152–187

    Google Scholar 

  21. Lopez AR, Rodriguez SB, Vallejo RA, Garcia PG, Macias-Sanchez MD, Diaz MG, Libran RG, Acero FJF (2019) Sustainable cultivation of Nannochloropsis gaditana microalgae in outdoor raceways using flue gases for a complete 2-year cycle: a circular economy challenge. J Appl Phycol 31:1515–1523

    Article  Google Scholar 

  22. Moheimani NR (2016) Tetraselmis suecica culture for CO2 bioremediation of untreated flue gas from a coal-fired power station. J Appl Phycol 28:2139–2146

    CAS  Article  Google Scholar 

  23. Mudimu O, Rybalka N, Bauersachs T, Friedl T, Schulz R (2015) Influence of different CO2 concentrations on microalgae growth, α-tocopherol content and fatty acid composition. Geomicrobiol J 32:291–303

    CAS  Article  Google Scholar 

  24. Qiu R, Gao S, Lopez PA, Ogden KL (2017) Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res 28:192–199

    Article  Google Scholar 

  25. Radmann EM, Camerini FV, Santos TD, Costa JAV (2011) Isolation and application of SOX and NOX resistant microalgae in biofixation of CO2 from thermoelectricity plants. Energ Convers Manage 52:3132–3136

    CAS  Article  Google Scholar 

  26. Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR (2014) CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Res 6:78–85

    Article  Google Scholar 

  27. Rahaman MSA, Cheng LH, Xu XH, Zhang L, Chen HL (2011) A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renew Sust Energ Rev 15:4002–4012

    Article  Google Scholar 

  28. Rai MP, Gautom T, Sharma N (2015) Effect of salinity, pH, light intensity on growth and lipid production on microalgae for bioenergy application. Online J Biol Sci 15:260–267

    CAS  Article  Google Scholar 

  29. Solovchenko A, Gorelova O, Selyakh I, Semenova L, Chivkunova O, Baulina O, Lobakova E (2014) Desmodesmus sp. 3Dp86E-1-a novel symbiotic chlorophyte capable of growth on pure CO2. Mar Biotechnol 16:495–501

    CAS  Article  Google Scholar 

  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Article  Google Scholar 

  31. Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    CAS  Article  Google Scholar 

  32. Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    CAS  Article  Google Scholar 

  33. Xie M, Qiu Y, Song C, Qi Y, Li Y, Kitamura Y (2018) Optimization of Chlorella sorokiniana cultivation condition for simultaneous enhanced biomass and lipid production via CO2 fixation. Bioresour Technol Rep 2:15–20

    Article  Google Scholar 

  34. Yadav G, Karemore A, Dash SK, Sen R (2015) Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresour Technol 191:399–406

    CAS  Article  Google Scholar 

  35. Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sust Energ Rev 31:121–132

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31602182), the 13th Five-Year Plan Marine Economy Innovation Development Demonstration Project (BHSFS004), and the Key Deployment Projects of Chinese Academy of Sciences (ZDRW-ZS-2017-2-1).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jinlan Xia or Wenzhou Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 326 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Gong, S., Chen, Z. et al. Potential microalgal strains for converting flue gas CO2 into biomass. J Appl Phycol (2020). https://doi.org/10.1007/s10811-020-02147-8

Download citation

Keywords

  • Screening
  • Microalgae
  • Flue gas CO2
  • Biomass
  • CO2 fixation rate