Interactive effects of warming and copper toxicity on a tropical freshwater green microalga Chloromonas augustae (Chlorophyceae)

Abstract

Microalgae, the primary producers in aquatic ecosystems, are highly susceptible to heavy metal contamination. In this study, the interactive effects of warming and copper (Cu) toxicity on the physiology (cell density, photosynthetic efficiency, reactive oxygen species (ROS) production, and metal uptake in the biomass) and biochemistry (metabolite) of a freshwater green microalga, Chloromonas augustae (UMACC246), were elucidated. The microalgae were exposed to culture media supplemented with copper (II) sulfate pentahydrate (CuSO4·5H2O) at different concentrations (50, 150, 250 μM) at two temperatures, 25 °C (control) and 30 °C (sub-optimal), for 24 h. The results indicated that C. augustae exhibited a concentration- and temperature-dependent decrease in the cell density. Copper greatly affected the photosynthetic efficiency of C. augustae by reducing the maximum rate of relative electron transport (rETRm), light harvesting efficiency (α), and saturation irradiance (Ek). Warming increased ROS production remarkably in the microalga. Untargeted metabolomics indicated that temperature contributed to the most significant variations in the cultures (p < 0.05) in comparison with Cu toxicity or both factors combined. Compounds such as amino acids and amines were significantly dysregulated in response to warming and Cu toxicity. Pathway analyses showed that the glutathione metabolism, sulfur metabolism, and mechanisms in the amino acid metabolism were regulated, suggesting that the microalga underwent primary metabolism restructuring for survival and adaptation. Overall, the data showed that warming enhanced Cu toxicity in the cultures. This implied that increasing water temperature and metal toxicity due to global warming and anthropogenic activities will probably exacerbate existing threats to the primary producers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    CAS  Article  Google Scholar 

  2. Amit, Ghosh UK (2018) An approach for phycoremediation of different wastewaters and biodiesel production using microalgae. Environ Sci Pollut Res 25:18673–18681

    CAS  Article  Google Scholar 

  3. Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23:1273–1292

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Chandra R, Amit, Ghosh UK (2019) Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production. Environ Sci Pollut Res 26:3848–3861

    CAS  Article  Google Scholar 

  5. Dao LHT, Beardall J (2016) Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. Chemosphere 147:420–429

    CAS  PubMed  Article  Google Scholar 

  6. Elshkaki A, Graedel TE, Ciacci L, Reck B (2016) Copper demand, supply, and associated energy use to 2050. Glob Environ Chang 39:305–315

    Article  Google Scholar 

  7. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72:3573–3580

    CAS  PubMed  Article  Google Scholar 

  8. Gao K, Beardall J, Häder DP, Hall-Spencer JM, Gao G, Hutchins DA (2019) Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation and deoxygenation. Front Mar Sci 6:322

    Article  Google Scholar 

  9. Gao G, Liu Y, Li X, Feng Z, Xu Z, Wu H, Xu J (2017) Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera. Environ Exp Bot 135:63–72

    CAS  Article  Google Scholar 

  10. Gao G, Xu Z, Shi Q, Wu H (2018) Increased CO2 exacerbates the stress of ultraviolet radiation on photosystem II function in the diatom Thalassiosira weissflogii. Environ Exp Bot 156:96–105

    CAS  Article  Google Scholar 

  11. Gosset A, Durrieu C, Barbe P, Bazin C, Bayard R (2019) Microalgal whole-cell biomarkers as sensitive tools for fast toxicity and pollution monitoring of urban wet weather discharges. Chemosphere 217:522–533

    CAS  PubMed  Article  Google Scholar 

  12. Häder D-P, Gao K (2015) Interactions of anthropogenic stress factors on marine phytoplankton. Front Environ Sci 3:14

    Google Scholar 

  13. Hamed SM, Selim S, Klöck G, AbdElgawad H (2017) Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses. Ecotoxicol Environ Saf 144:19–25

    CAS  PubMed  Article  Google Scholar 

  14. Hillyer KE, Dias DA, Lutz A, Wilkinson SP, Roessner U, Davy SK (2017) Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs 36:105–118

    Article  Google Scholar 

  15. Holzinger A, Pichrtová M (2016) Abiotic stress tolerance in charophyte green algae: new challenges for omics techniques. Front Plant Sci 7:678

    PubMed  PubMed Central  Article  Google Scholar 

  16. Huang X-G, Li S-X, Liu F-J, Lan W-R (2018) Regulated effects of Prorocentrum donghaiense Lu exudate on nickel bioavailability when cultured with different nitrogen sources. Chemosphere 197:57–64

    CAS  PubMed  Article  Google Scholar 

  17. Jamers A, Blust R, De Coen W, Griffin JL, Jones OAH (2013) An omics based assessment of cadmium toxicity in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 126:355–364

    CAS  PubMed  Article  Google Scholar 

  18. Jamers A, Van der Ven K, Moens L, Robbens J, Potters G, Guisez Y, Blust R, De Coen W (2006) Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis. Aquat Toxicol 80:249–260

    CAS  PubMed  Article  Google Scholar 

  19. Jenkins S, Fischer SM, Chen L, Sana TR (2013) Global LC/MS metabolomics profiling of calcium stressed and immunosuppressant drug treated Saccharomyces cerevisiae. Metabolites 3:1102–1117

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Jiang Y, Zhu Y, Hu Z, Lei A, Wang J (2016) Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii. Ecotoxicology 25:1417–1425

    CAS  PubMed  Article  Google Scholar 

  21. Knauert S, Knauer K (2008) The role of reactive oxygen species in copper toxicity to two freshwater green algae. J Phycol 44:311–319

    CAS  PubMed  Article  Google Scholar 

  22. Kováčik J, Klejdus B, Babula P, Hedbavny J (2016) Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J Hazard Mater 306:58–66

    PubMed  Article  CAS  Google Scholar 

  23. Kropat J, Gallaher SD, Urzica EI, Nakamoto SS, Strenkert D, Tottey S, Mason AZ, Merchant SS (2015) Copper economy in Chlamydomonas: prioritized allocation and reallocation of copper to respiration vs. photosynthesis. Proc Natl Acad Sci U S A 112:2644–2651

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Kuipers KJJ, Van Oers LFCM, Verboon M, Van Der Voet E (2018) Assessing environmental implications associated with global copper demand and supply scenarios from 2010 to 2050. Glob Environ Chang 49:106–115

    Article  Google Scholar 

  25. Küpper H, Šetlík I, Šetliková E, Ferimazova N, Spiller M, Küpper FC (2003) Copper-induced inhibition of photosynthesis: limiting steps of in vivo copper chlorophyll formation in Scenedesmus quadricauda. Funct Plant Biol 30:1187–1196

    PubMed  Article  CAS  Google Scholar 

  26. Lombardi AT, Maldonado MT (2011) The effects of copper on the photosynthetic response of Phaeocystis cordata. Photosynth Res 108:77–87

    CAS  PubMed  Article  Google Scholar 

  27. Lozano P, Trombini C, Crespo E, Blasco J, Moreno-Garrido I (2014) ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicol Environ Saf 104:294–301

    CAS  PubMed  Article  Google Scholar 

  28. Malapascua JRF, Jerez CG, Sergejevová M, Figueroa FL, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Article  Google Scholar 

  29. Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28:299–311

    CAS  PubMed  Article  Google Scholar 

  31. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Article  Google Scholar 

  32. Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299.

  33. Nowicka B, Pluciński B, Kuczyńska P, Kruk J (2016) Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotoxicol Environ Saf 130:133–145

    CAS  PubMed  Article  Google Scholar 

  34. Nayak JK, Ghosh UK (2019) Post treatment of microalgae treated pharmaceutical wastewater in photosynthetic microbial fuel cell (PMFC) and biodiesel production. Biomass Bioenergy 131. https://doi.org/10.1016/j.biombioe.2019.105415

  35. OECD (2002) OECD guidelines for the testing of chemicals. OECD Guidelines Test Chem (July):1–21. https://doi.org/10.1787/9789264203785-en

  36. Oukarroum A, Perreault F, Popovic R (2012b) Interactive effects of temperature and copper on photosystem II photochemistry in Chlorella vulgaris. J Photochem Photobiol B 110:9–14

    CAS  PubMed  Article  Google Scholar 

  37. Oukarroum A, Polchtchikov S, Perreault F, Popovic R (2012a) Temperature influence on silver nanoparticles inhibitory effect on photosystem II photochemistry in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Environ Sci Pollut Res 19:1755–1762

    CAS  Article  Google Scholar 

  38. Pesce S, Lambert A, Morin S, Foulquier A, Coquery M, Dabrin A (2018) Experimental warming differentially influences the vulnerability of phototrophic and heterotrophic periphytic communities to copper toxicity. Front Microbiol 9:1424

    PubMed  PubMed Central  Article  Google Scholar 

  39. Phang S-M, Chu W-L (1999) University of Malaya Algae Culture Collection (UMACC). University of Malaya, Kuala Lumpur, Catalogue of Strains

    Google Scholar 

  40. Pröschold, T., Marin, B., Schlösser, U.W. & Melkonian, M. (2001). Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. Protist 152: 265–300

  41. Sampaio E, Rosa R (2019) Climate change, multiple stressors, and responses of marine biota. In: Filho WL, Azul A, Brandli L, Özuyar P, Wall T (eds) Encyclopedia of the UN sustainable development goals - climate action. Springer Nature, Basingstoke pp1–13

  42. Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53:257–277

    CAS  Article  Google Scholar 

  43. Silva V, Marques CR, Campos I, Vidal T, Keizer JJ, Gonçalves F, Abrantes N (2018) Combined effect of copper sulfate and water temperature on key freshwater trophic levels – approaching potential climatic change scenarios. Ecotoxicol Environ Saf 148:384–392

    CAS  PubMed  Article  Google Scholar 

  44. Singh M, Pant G, Hossain K, Bhatia AK (2017) Green remediation. Tool for safe and sustainable environment: a review. Appl Water Sci 7:2629–2635

    CAS  Article  Google Scholar 

  45. Sunda W, Guillard RRL (1976) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J Mar Res 34:511–529

    CAS  Google Scholar 

  46. Suresh Kumar K, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae - a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

  47. Švec P, Kováčik J, Hedbavný J, Babula P, Rotková G, Klejdus B (2016) Impact of anions, cations, and pH on manganese accumulation and toxicity in the green alga Scenedesmus quadricauda. Water Air Soil Pollut 227:161–169

    Article  CAS  Google Scholar 

  48. Teoh ML, Phang SM, Chu WL (2013) Response of Antarctic, temperate, and tropical microalgae to temperature stress. J Appl Phycol 25:285–297

    CAS  Article  Google Scholar 

  49. Tevatia R, Allen J, Rudrappa D, White D, Clemente TE, Cerutti H, Blum P (2015) The taurine biosynthetic pathway of microalgae. Algal Res 9:21–26

    Article  Google Scholar 

  50. Thompson LA, Darwish WS (2019) Environmental chemical contaminants in food: review of a global problem. J Toxicol 2019:2345283

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. Walz H (2000) WinControl - Windows software for PAM fluorometers users manual. Heinz Walz GmbH, Effeltrich

    Google Scholar 

  52. Wang H, Sathasivam R, Ki J (2017) Physiological effects of copper on the freshwater alga Closterium ehrenbergii Meneghini (Conjugatophyceae) and its potential use in toxicity assessments. Algae 32:131–137

    CAS  Article  Google Scholar 

  53. Wang L, Huang X, Lim DJ, Laserna AKC, Fong SYL (2019) Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: insights from untargeted metabolomics. Sci Total Environ 650:1239–1249

    CAS  PubMed  Article  Google Scholar 

  54. Wang M-J, Wang W-X (2008) Temperature-dependent sensitivity of a marine diatom to cadmium stress explained by subcelluar distribution and thiol synthesis. Environ Sci Technol 42:8603–8608

    CAS  PubMed  Article  Google Scholar 

  55. Wang Y, Xu L, Shen H, Wang J, Liu W, Zhu X, Wang R, Sun X, Liu L (2015) Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots. Sci Rep 5:18296

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16

    Article  Google Scholar 

  57. Yong W-K, Sim K-S, Poong S-W, Wei D, Phang S-M, Lim PE (2019) Physiological and metabolic responses of Scenedesmus quadricauda (Chlorophyceae) to nickel toxicity and warming. 3 Biotech 9:315.

  58. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831

    CAS  Article  Google Scholar 

  59. Zhang B, Zhang H, Du C, Xiang Q, Hu C, He Y, Nam C (2017) Metabolic responses of the growing Daphnia similis to chronic AgNPs exposure as revealed by GC-Q-TOF/MS and LC-Q-TOF/MS. Water Res 114:135–143

    CAS  PubMed  Article  Google Scholar 

  60. Zhang W, Tan NGJ, Fua B, Li SFY (2015) Metallomics and NMR-based metabolomics of Chlorella sp. reveal synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics 7:426–438

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

Financial support was from the Ministry of Education’s HICOE grant (IOES-2014H), the University of Malaya Research University Grant (TU001C-2018), the Fundamental Research Grant Scheme (FP048-2016), and the University of Malaya PPP Grant (PG267-2016A). S-W. Poong is supported by the UM Top 100 University (TOP100PDIOES) fund by the University of Malaya.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Phaik-Eem Lim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 79 kb)

ESM 2

(PDF 156 kb)

ESM 3

(PDF 254 kb)

ESM 4

(PDF 78 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yong, WK., Sim, KS., Poong, SW. et al. Interactive effects of warming and copper toxicity on a tropical freshwater green microalga Chloromonas augustae (Chlorophyceae). J Appl Phycol 33, 67–77 (2021). https://doi.org/10.1007/s10811-020-02087-3

Download citation

Keywords

  • Chloromonas
  • Chlorophyceae
  • Copper toxicity
  • Metabolomics
  • Microalgae
  • Photosynthesis
  • Temperature stress