Skip to main content

Advertisement

Log in

Interactions between the brown tide-causing microalga Aureococcus anophagefferens and the small diatom Minutocellus polymorphus under laboratory culture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Brown tides caused by Aureococcus anophagefferens (Pelagophyta) have broken out frequently and have caused serious ecological problems in the coastal waters of the Bohai Sea, China, since 2009. During the brown tides caused by A. anophagefferens, the small marine diatom Minutocellus polymorphus has often become dominant, co-existing with A. anophagefferens. To investigate the bloom formation mechanisms and co-existence factors involved, bi-algal culture and growth experiments with culture filtrates were performed under laboratory-controlled conditions. In our experiments, A. anophagefferens and M. polymorphus growth was allelopathically suppressed by the other species, depending on initial cell densities and growth stages; however, the species did not outcompete each other during the observed time frame. The results also suggested that the relevant allelochemicals might be a mixture containing some temperature-sensitive compounds. Growth simulation performed via the Lotka-Volterra model indicated that the initial cell density of these two species was critical in determining their growth and competition in bi-algal culture. Our results showed that a similar allelopathic effect was exerted by A. anophagefferens on M. polymorphus and vice versa. This effect could be important in allowing the observed co-existence of these two species in natural waters during brown tides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An M, Johnson IR, Lovett JV (1996) Mathematical modelling of allelopathy. I. Phytotoxicity caused by plant residues during decomposition. Allelopath J 3:33–42

    Google Scholar 

  • Armstrong RA (2003) A hybrid spectral representation of phytoplankton growth and zooplankton response: the “control rod” model of plankton interaction. Deep Sea Res II 50:2895–2916

    Article  Google Scholar 

  • Arzul G, Seguel M, Guzman L, Denn EL (1999) Comparison of allelopathic properties in three toxic Alexandrium species. J Exp Mar Biol Ecol 232:285–295

    Article  Google Scholar 

  • Barreiro Felpeto A, Roy S, Vasconcelos VM (2018) Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos 127:85–98

    Article  Google Scholar 

  • Berglund H (1969) Stimulation of growth of two marine green algae by organic substances excreted by Enteromorpha linza in unialgal and axenic cultures. Physiol Plant 22:1069–1078

    Article  Google Scholar 

  • Bertholdsson NO (2012) Allelopathy—a tool to improve the weed competitive ability of wheat with herbicide-resistant black-grass (Alopecurus myosuroides Huds.). Agronomy 2:284–294

    Article  Google Scholar 

  • Cavender-Bares KK, Rinaldo A, Chisholm SW (2001) Microbial size spectra from natural and nutrient enriched ecosystems. Limnol Oceanogr 46:778–789

    Article  Google Scholar 

  • Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci U S A 78:6324–6328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christoffersen K, Lyck S, Winding A (2002) Microbial activity and bacterial community structure during degradation of microcystins. Aquat Microb Ecol 27:125–136

    Article  Google Scholar 

  • Dong HP, Huang KX, Wang HL, Lu SH, Cen JY, Dong YL (2014) Understanding strategy of nitrate and urea assimilation in a Chinese strain of Aureococcus anophagefferens through RNA-seq analysis. PLoS One 9:e111069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125

    Article  Google Scholar 

  • Fistarol GO, Legrand C, Granéli E (2005) Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol 41:153–161

    Article  Google Scholar 

  • Gallager SM, Stoecker DK, Bricelj VM (1989) Effects of the brown tide alga on growth, feeding physiology and locomotory behavior of scallop larvae (Argopecten irradians). In: Cosper EM, Bricelj VM, Carpenter EJ (eds) Novel phytoplankton blooms: causes and impacts of recurrent Brown tides and other unusual blooms. Springer, Berlin, pp 511–542

    Google Scholar 

  • Gobler CJ, Lonsdale DJ, Boyer GL (2005) A review of the causes, effects, and potential management of harmful brown tide blooms caused by Aureococcus anophagefferens (Hargraves et Sieburth). Estuaries 28:726–749

    Article  Google Scholar 

  • Granéli E, Johansson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2:135–145

    Article  CAS  Google Scholar 

  • Granéli E, Weberg M, Salomon PS (2008) Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8:94–102

    Article  CAS  Google Scholar 

  • Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339

    Article  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  • Hagström JA, Granéli E, Maneiro I, Barreiro A, Petermann A, Svensen C (2007) Release and degradation of amnesic shellfish poison from decaying Pseudo-nitzschia multiseries in presence of bacteria and organic matter. Harmful Algae 6:175–188

    Article  CAS  Google Scholar 

  • Hattenrath-Lehmann TK, Gobler CJ (2011) Allelopathic inhibition of competing phytoplankton by north American strains of the toxic dinoflagellate, Alexandrium fundyense: evidence from field experiments, laboratory experiments, and bloom events. Harmful Algae 11:106–116

    Article  Google Scholar 

  • Iwasa Y (1998) Suri-seibutugaku nyuumon, 2nd edn. Kyoritu Syuppan, Tokyo

    Google Scholar 

  • Kang Y, Gobler CJ (2018) The brown tide algae, Aureococcus anophagefferens and Aureoumbra lagunensis (Pelagophyceae), allelopathically inhibit the growth of competing microalgae during harmful algal blooms: allelopathic effects of brown tide algae. Limnol Oceanogr 63:985–1003

    Article  Google Scholar 

  • Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887

    Article  CAS  PubMed  Google Scholar 

  • Keating KI (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–973

    Article  CAS  PubMed  Google Scholar 

  • Kong FZ, Yu RC, Zhang QC, Yan T, Zhou MJ (2012) Pigment characterization for the 2011 bloom in Qinhuangdao implicated “brown tide” events in China. Chin J Oceanol Limnol 30:361–370

    Article  CAS  Google Scholar 

  • Kraeuter JN, Klinck JM, Powell EN, Hofmann EE, Buckner SC, Grizzle RE, Bricelj VM (2008) Effects of the fishery on the northern quahog (= hard clam, Mercenaria mercenaria L.) population in Great South Bay, New York: a modeling study. J Shellfish Res 27:653–666

    Article  Google Scholar 

  • Kubanek J, Hicks MK, Naar J, Villareal TA (2005) Does the red tide dinoflagellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50:883–895

    Article  Google Scholar 

  • Landry MR, Ondrusek ME, Tanner SJ, Brown SL, Constantinou J, Bidigare RR, Coale KH, Fitzwater S (2000) Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar Ecol Prog Ser 201:27–42

    Article  CAS  Google Scholar 

  • LaRoche J, Nuzzi R, Waters R, Wyman K, Falkowski P, Wallace D (1997) Brown tide blooms in Long Island’s coastal waters linked to interannual variability in groundwater flow. Glob Chang Biol 3:397–410

    Article  Google Scholar 

  • Legrand C, Rengefors K, Fistarol GO, Granéli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–419

    Article  Google Scholar 

  • Leyberth FH, Christine BS, David LC, Claudia HG, José BG, Erick NV (2016) Allelopathic effect of Chattonella marina var. marina (Raphidophyceae) on Gymnodinium catenatum (Dinophycea). Harmful Algae 51:1–9

    Article  Google Scholar 

  • Lindholm T, Virtanen T (1992) A bloom of Prymnesium parvum Carter in a small coastal inlet in Dragsfjärd, southwestern Finland. Environ Toxicol Water Qual 7:165–170

    Article  CAS  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear inequalities. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  • Matsuyama Y, Uchida T, Kotani Y (2000) Effect of culture filtrate of raphidophytes Heterosigma akashiwo and Chattonella antiqua on the growth of diatom Skeletonema costatum. Bull Fish Environ Inland Sea 2:57–66

    Google Scholar 

  • Monahan TJ, Trainor FR (1970) Stimulatory properties of filtrate from the green alga, Hormotila blennista. I Description. J Phycol 6:263–269

    CAS  Google Scholar 

  • Monahan TJ, Trainor FR (1971) Stimulatory properties of filtrate from green alga, Hormotila blennista. II Fractionation of filtrate. J Phycol 7:170–176

    CAS  Google Scholar 

  • Mukhopadhyay A, Tapaswi PK, Chattopadhyay J (1998) A delay differential equations model of plankton allelopathy. Math Biosci 149:167–189

    Article  CAS  PubMed  Google Scholar 

  • Mulholland MR, Gobler CJ, Lee C (2002) Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated by Aureococcus anophagefferens. Limnol Oceanogr 47:1094–1108

    Article  Google Scholar 

  • Nagasoe S, Toda S, Shimasaki Y, Oshima Y, Uchida T, Honjo T (2006) Growth inhibition of Gyrodinium instriatum (Dinophyceae) by Skeletonema costatum (Bacillariophyceae). Afr J Mar Sci 28:325–329

    Article  Google Scholar 

  • Nuzzi R, Waters RM (2004) Long-term perspective on the dynamics of brown tide blooms in Long Island coastal bays. Harmful Algae 3:279–293

    Article  CAS  Google Scholar 

  • Padilla DK, Doall MH, Gobler CJ, Hartson A, O’Boyle K (2006) Brown tide alga, Aureococcus anophagefferens, can affect growth but not survivorship of Mercenaria mercenaria larvae. Harmful Algae 5:736–748

    Article  Google Scholar 

  • Pratt DM (1966) Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol Oceanogr 11:447–455

    Article  Google Scholar 

  • Probyn TA, Pitcher GC, Pienaar RN, Nuzzi R (2001) Brown tides and mariculture in Saldanha Bay, South Africa. Mar Pollut Bull 42:405–408

    Article  CAS  PubMed  Google Scholar 

  • Probyn TA, Bernard S, Pitcher GC, Pienaar RN (2010) Ecophysiological studies on Aureococcus anophagefferens blooms in Saldanha Bay, South Africa. Harmful Algae 9:123–133

    Article  CAS  Google Scholar 

  • Remmel EJ, Hambright KD (2012) Toxin-assisted micropredation: experimental evidence shows that contact micropredation rather than exotoxicity is the role of Prymnesium toxins. Ecol Lett 15:126–132

    Article  PubMed  Google Scholar 

  • Rengefors K, Legrand C (2001) Toxicity in Peridinium aciculiferum—an adaptive strategy to outcompete other winter phytoplankton? Limnol Oceanogr 46:1990–1997

    Article  CAS  Google Scholar 

  • Rice TR (1954) Biotic influence affecting population growth of planktonic algae. Fish Bull Fish Wildl Serv 54:227–254

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, London

    Google Scholar 

  • Rijssel M, Alderkamp AC, Nejstgaard JC, Sazhin AF, Verity PG (2007) Haemolytic activity of live Phaeocystis pouchetii during mesocosm blooms. Biogeochemistry 83:189–200

    Article  Google Scholar 

  • Roy S (2009) The coevolution of two phytoplankton species on a single resource: allelopathy as a pseudo-mixotrophy. Theor Popul Biol 75:68–75

    Article  PubMed  Google Scholar 

  • Sengco MR, Hagström JA, Granéli E, Anderson DM, Kuuppo P (2005) Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae 4:261–274

    Article  Google Scholar 

  • Smayda TJ, Villareal TA (1989) An extraordinary, noxious brown-tide in Narragansett Bay. 1. The organism and its dynamics. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 129–132

    Google Scholar 

  • Streibig JC, Kudsk P, Jensen JE (1998) A general joint action model for herbicide mixtures. Pestic Sci 53:21–28

    Article  CAS  Google Scholar 

  • Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena , Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101

    Article  Google Scholar 

  • Tapaswi PK, Mukhopadhyay A (1999) Effects of environmental fluctuation on plankton allelopathy. J Math Biol 39:39–58

    Article  Google Scholar 

  • Tarutani K, Nagasaki K, Yamaguchi M (2000) Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appl Environ Microbiol 66:4916–4920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: An allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser 230:47–58

    Article  CAS  Google Scholar 

  • Tillmann U, John U, Cembella A (2007) On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 29:527–543

    Article  Google Scholar 

  • Toledo Marante FJ, García CA, Estévez RF, Quintana AJ, Bermejo BJ (2003) Identification and quantitation of allelochemicals from the lichen Lethariella canariensis: phytotoxicity and antioxidative activity. J Chem Ecol 29:2049–2071

    Article  CAS  PubMed  Google Scholar 

  • Tracey GA (1988) Feeding reduction, reproductive failure, and mortality in Mytilus edulis during the 1985 “brown tide” in Narragansett Bay, Rhode Island. Mar Ecol Prog Ser 50:73–81

    Article  Google Scholar 

  • Uchida T (1995) A red-tide dinoflagellate, Heterocapsa sp. kills Gyrodinium instriatum by cell contact. Mar Ecol Prog Ser 118:301–303

    Article  Google Scholar 

  • Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T (1999) Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J Exp Mar Biol Ecol 241:285–299

    Article  Google Scholar 

  • Wang Y, Yu Z, Song X, Zhang S (2006) Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. J Sea Res 56:17–26

    Article  CAS  Google Scholar 

  • Yu J (2014) The efficient technology of detecting plankton diversity and its application in the study of Brown tide in Bohai. Dissertation, Ocean University of China

  • Żak A, Musiewicz K, Kosakowska A (2012) Allelopathic activity of the Baltic cyanobacteria against microalgae. Estuar Coast Shelf Sci 112:4–10

    Article  CAS  Google Scholar 

  • Zhang DP, Wu BG (2000) Studies on responses of red tide algae on temperature, nitrogen, phosphorus and the algal interactions. J Jinan Univ (Nat Sci) 21:82–87

    CAS  Google Scholar 

  • Zhang QC, Qiu LM, Yu RC, Kong FZ, Wang YF, Yan T, Gobler CJ, Zhou MJ (2012) Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China. Harmful Algae 19:117–124

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Major State Research Development Program of China (no. 2016YFA0601302) and the National Marine Public Welfare Research Project (201205031-03). The authors would like to thank Dr. Xiaotian Han of the Institute of Oceanology, Chinese Academy of Sciences, for generously providing the A. anophagefferens CCMP 1850 algal strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Gao.

Electronic supplementary material

ESM 1

The correlation between the OD680 and cell density of Aureococcus anophagefferens (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Gao, Y., Chen, C. et al. Interactions between the brown tide-causing microalga Aureococcus anophagefferens and the small diatom Minutocellus polymorphus under laboratory culture. J Appl Phycol 31, 1793–1803 (2019). https://doi.org/10.1007/s10811-018-1704-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1704-y

Keywords

Navigation