Skip to main content
Log in

Ultrasound-assisted turbine bead milling for disintegration of Nannochloropsis oculata cells

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The disintegration of Nannochloropsis oculata cells in a turbine-stirred bead mill with an ultrasonic system was investigated. The effect of ultrasonic assistance on the suspension viscosity and the percentage of cell disintegration of N. oculata in the disintegration process are discussed. The results show that ultrasonic assistance has a significant effect on the viscosity reduction of N. oculata suspension in the disintegration process, resulting in an increase in the disintegration efficiency. The effective disintegration can be obtained under optimum condition (i.e., ultrasonic power of 100 W, ultrasonic time interval of 5 s, and disintegration time of 30 min). In addition, the disintegration behaviors with and without ultrasonic assistance were also simulated by population balance modeling (PBM). Based on the simulated results, ultrasonic assistance during disintegration process can increase the disruption efficiency of N. oculata cells and the cells are mainly disrupted by compression and shear effects in the mill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramov VO, Abramova AV, Bayazitov VM, Mullakaev MS, Marnosov AV, Ildiyakov AV (2017) Acoustic and sonochemical methods for altering the viscosity of oil during recovery and pipeline transportation. Ultrason Sonochem 35:389–396

    Article  CAS  PubMed  Google Scholar 

  • Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q (2012) Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Appl Energy 96:371–377

    Article  CAS  Google Scholar 

  • Austin LG (2004) A preliminary simulation model for fine grinding in high speed hammer mills. Powder Technol 143-144:240–252

    Article  CAS  Google Scholar 

  • Beacham TA, Bradley C, White DA, Bond P, Ali ST (2014) Lipid productivity and cell wall ultrastructure of six strains of Nannochloropsis: implications for biofuel production and downstream processing. Algal Res 6:64–69

    Article  Google Scholar 

  • Berthiaux H, Varinot C, Dodds J (1996) Approximate calculation of breakage parameters from batch grinding tests. Chem Eng Sci 51:4509–4516

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–635

    Chapter  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzym Microb Technol 8:194–204

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    Article  CAS  PubMed  Google Scholar 

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253

    Article  CAS  PubMed  Google Scholar 

  • Gil M, Luciano E, Arauzo I (2015) Population balance model for biomass milling. Powder Technol 276:34–44

    Article  CAS  Google Scholar 

  • Grimi N, Dubois A, Marchal L, Jubeau S, Lebovka NI, Vorobiev E (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour Technol 153:254–259

    Article  CAS  PubMed  Google Scholar 

  • Günerken E, D'Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121

    Article  CAS  Google Scholar 

  • Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T (2008) Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov Food Sci Emerg 9:140–146

    Article  CAS  Google Scholar 

  • Kandilian R, Lee E, Pilon L (2013) Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra. Bioresour Technol 137:63–73

    Article  CAS  PubMed  Google Scholar 

  • Kapur PC, Agrawal PK (1970) Approximate solutions to the discretized batch grinding equation. Chem Eng Sci 25:1111–1113

    Article  CAS  Google Scholar 

  • Mitra M, Patidar SK, Mishra S (2015) Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresour Technol 193:363–369

    Article  CAS  PubMed  Google Scholar 

  • Pan Z, Huang Y, Wang Y, Wu Z (2017) Disintegration of Nannochloropsis sp. cells in an improved turbine bead mill. Bioresour Technol 245:641–648

    Article  CAS  PubMed  Google Scholar 

  • Reid KJ (1965) A solution to the batch grinding equation. Chem Eng Sci 20:953–963

    Article  CAS  Google Scholar 

  • Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schütte H, Kula MR (1991) Pilot- and process-scale techniques for cell disruption. Biotechnol Appl Biochem 12:599–620

    Google Scholar 

  • Schwede S, Kowalczyk A, Gerber M, Span R (2011) Influence of different cell disruption techniques on mono digestion of algal biomass. World Renewable Energy Congress - Bioenergy Technology (BE)-Sweden, pp. 41–7

  • Spiden E, Scales P, Kentish S, Martin G (2014) Critical analysis of quantitative indicators of cell disruption applied to Saccharomyces cerevisiae processed with an industrial high pressure homogenizer. Biochem Eng J 70:120–126

    Article  CAS  Google Scholar 

  • Toma M, Vinatoru M, Paniwnyk L, Mason TJ (2001) Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason Sonochem 8:137–142

    Article  CAS  PubMed  Google Scholar 

  • Wu PF, Teng JC, Lin YH, Hwang S-CJ (2013) Increasing algal biofuel production using Nannocholropsis oculata cultivated with anaerobically and aerobically treated swine wastewater. Bioresour Technol 133:102–108

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Funding of Guangdong Science and Technology Department, China (No. 2015A020209019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanmin Wang.

Electronic supplementary material

ESM 1

(DOCX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Pan, Z. & Wang, Y. Ultrasound-assisted turbine bead milling for disintegration of Nannochloropsis oculata cells. J Appl Phycol 31, 1651–1659 (2019). https://doi.org/10.1007/s10811-018-1702-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1702-0

Keywords

Navigation