Skip to main content

Advertisement

Log in

The narrow window of energy application for oil extraction by arc discharge

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Oil production by microalgae is investigated as a possible solution to sustain the petroleum shortage. Some microalgae such as Botryococcus braunii have the advantage of being able to produce a high amount of hydrocarbon without requiring arable lands to grow on. Also, hydrocarbons extracted from B. braunii are suitable for the cosmetic industry, as they are long-chain hydrocarbons similar to squalene. As such, B. braunii oil might generate a high profit. However, harvesting hydrocarbon from microalgae cultures is difficult. Here we show an innovative way of collecting hydrocarbon from algae culture using high voltage electric discharges (HVED). Botryococcus braunii form a matrix full of hydrocarbons allowing many cells to stick together as microcolonies. When the energy applied is too high, hydrocarbons are destroyed; and when the energy is to low, algae culture stays unchanged. But when energy applied is just sufficient (near 625 J mL−1), cells leave colonies and sink to the bottom of the samples, while hydrocarbons remain unaffected and float to the surface of the samples. Such a phenomenon allows us to harvest the matrices of colonies which are empty of cells, suitable as a biomass for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akiyama H (2000) Streamer discharges in liquids and their applications. IEEE Trans Dielectr Electr Insul 7:646–653

    Article  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  Google Scholar 

  • Bell S (2014) Understanding the chemical gymnastics of enzyme-catalyzed 1’-1 and 1’-3 triterpene linkages. PhD Thesis, University of Kentucky

  • Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM (2016) Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 50:34–66

    Article  CAS  Google Scholar 

  • Blackburn KB (1936) A reinvestigation of the alga Botryococcus braunii Kützing. Trans R Soc Edinb 58:841–854

    Google Scholar 

  • Boussetta N, Lesaint O, Vorobiev E (2013) A study of mechanisms involved during the extraction of polyphenols from grape seeds by pulsed electrical discharges. Innov Food Sci Emerg Technol 19:124–132

    Article  CAS  Google Scholar 

  • Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresour Technol 101:2359–2366

    Article  CAS  Google Scholar 

  • Fox CB (2009) Squalene emulsions for parenteral vaccine and drug delivery. Molecules 14:3286–3312

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2008) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  Google Scholar 

  • Grémy-Gros C, Lanoisellé J-L, Vorobiev E (2009) Application of high-voltage electrical discharges for the aqueous extraction from oilseeds and other plants. In: Vorobriev E, Lebkova N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York, pp 217–235

    Chapter  Google Scholar 

  • Grung M, Metzger P, Berkaloff C, Liaaen-Jensen S (1994) Studies on the formation and localization of primary and secondary carotenoids in the green alga Botryococcus braunii, including the regreening process. Comp Biochem Physiol B 107:265–272

    Article  Google Scholar 

  • Guionet A, Hosseini B, Teissié J, Akiyama H, Hosseini H (2017) A new mechanism for efficient hydrocarbon electro-extraction from Botryococcus braunii. Biotechnol Biofuels 10:39

    Article  Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    Article  CAS  Google Scholar 

  • Hoffer P, Sunka P, Lukes P (2009) Investigation of cavitations dynamics induced by tandem shock waves in water. In: IEEE International Conference on Plasma Science - abstracts, 2009. ICOPS 2009. pp 1–1

  • Hoffer P, Sugiyama Y, Hosseini H, Akaiyama H, Lukes P, Akiyama M (2016) Characteristics of meter-scale surface discharge propagating along water surface at atmospheric pressure. J Phys D 49:415202

    Article  Google Scholar 

  • Hoffer P, Lukes P, Akiyama H, Hosseini H (2017) Spatiotemporal dynamics of underwater conical shock wave focusing. Shock Waves 27:685–690

    Article  Google Scholar 

  • Hou L, Park H, Okada S, Ohama T (2014) Release of single cells from the colonial oil-producing alga Botryococcus braunii by chemical treatments. Protoplasma 251:191–199

    Article  CAS  Google Scholar 

  • Huang Z, Poulter CD (1989) Stereochemical studies of botryococcene biosynthesis: analogies between 1′-1 and 1′-3 condensations in the isoprenoid pathway. J Am Chem Soc 111:2713–2715

    Article  CAS  Google Scholar 

  • Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H (2015) Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 10:e0120446

    Article  Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051

    Article  CAS  Google Scholar 

  • Laummonerie C, Mutterer J (2004) RGB_Profiler. https://imagej.nih.gov/ij/plugins/rgb-profiler.html

  • Metzger P, Berkaloff C, Casadevall E, Coute A (1985) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Moutel B (2016) Etude de l’interet pharmaceutique et d’une production industrielle des lipides issus de la microalgue Botryococcus braunii. Thesis, Universite de Nantes

  • Naugolnykh KA, Roii NA, OH FTDW-P (1974) Electrical discharges in water. A hydrodynamic description. Defense Technical Information Center

  • Okada S, Devarenne TP, Murakami M, Abe H, Chappell J (2004) Characterization of botryococcene synthase enzyme activity, a squalene synthase-like activity from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 422:110–118

    Article  CAS  Google Scholar 

  • Oshita D, Hosseini SHR, Miyamoto Y, Mwatari K, Akiyama H (2013) Study of underwater shock waves and cavitation bubbles generated by pulsed electric discharges. IEEE Trans Dielectr Electr Insul 20:1273–1278

    Article  Google Scholar 

  • Reddy LH, Couvreur P (2009) Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 61:1412–1426

    Article  CAS  Google Scholar 

  • Sakai K, Quick TW (1988) Moisturizing skin preparation. US Patent 4760096A

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351

    Article  CAS  Google Scholar 

  • Summons RE, Metzger P, Largeau C, Murray AP, Hope JM (2002) Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and crude oils. Org Geochem 33:99–109

    Article  CAS  Google Scholar 

  • Sun B, Sato M, Harano A, Clements JS (1998) Non-uniform pulse discharge-induced radical production in distilled water. J Electrost 43:115–126

    Article  CAS  Google Scholar 

  • Sunka P, Babický V, Clupek M, Lukes P, Simek M, Schmidt J, Cernak M (1999) Generation of chemically active species by electrical discharges in water. Plasma Sources Sci Technol 8:258–265

    Article  CAS  Google Scholar 

  • Tonegawa I, Okada S, Murakami M, Yamaguchi K (1998) Pigment composition of the green microalga Botryococcus braunii Kawaguchi-1. Fish Sci 64:305–308

    Article  CAS  Google Scholar 

  • Touya G (2005) Contribution à l’étude expérimentale des décharges électriques dans l’eau et des ondes de pression associées. Réalisation d’un prototype industriel 100 kJ pour le traitement de déchets par puissances électriques pulsées. Thesis, Université de Pau

  • Touya G, Reess T, Pécastaing L, Gibert A, Domens P (2006) Development of subsonic electrical discharges in water and measurements of the associated pressure waves. J Phys Appl Phys 39:5236–5244

    Article  CAS  Google Scholar 

  • Tran NH, Bartlett JR, Kannangara GSK, Milev AS, Volk H, Wilson MA (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 89:265–274

    Article  CAS  Google Scholar 

  • Vorobiev E, Lebovka N (eds) (2009) Electrotechnologies for extraction from food plants and biomaterials. Springer, New York

    Google Scholar 

  • Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Laboratory of Biological and Mechanical Engineering, The University of Tokyo, for providing CHU13 modified medium.

Funding

This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (17K06163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Guionet.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guionet, A., Oura, K., Akiyama, H. et al. The narrow window of energy application for oil extraction by arc discharge. J Appl Phycol 31, 89–96 (2019). https://doi.org/10.1007/s10811-018-1579-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1579-y

Keywords

Navigation