Skip to main content
Log in

Intrageneric chloroplast genome comparison in the genus Euglena (Phylum: Euglenophyta) with annotated chloroplast genomes of Euglena hiemalis and Euglena clara

  • 8th Asian Pacific Phycological Forum
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The genus Euglena is composed of six subclades with a diversity of chloroplast morphologies, unlike that found in the other genera of Euglenaceae. This genus contains five published chloroplast genomes (cpGenome) and the colorless plastid genome (ptGenome) of the non-photosynthetic euglenoid Euglena longa within the same subclade as Euglena gracilis. Previous studies of cpGenomes revealed that Euglena viridis and E. gracilis, although in separate subclades, had few cpGenome differences, while Euglena mutabilis maintained the same gene order but was mirror-inverted except for the rRNA cluster. However, we expanded the number of cpGenomes available in Euglena by sequencing and annotating the cpGenomes of Euglena clara, the earliest diverging species in the E. gracilis and E. longa subclade and Euglena hiemalis, the putative sister species to E. longa. Analysis of these newly annotated cpGenomes showed them to be largely similar in gene content, conserved gene clusters (operons), and G + C/A + T percentage to previously published Euglena cpGenomes. The only extensive gene rearrangements observed were between cpGenomes and the ptGenome in subclade B. However, a unique feature of the subclade was multi-copies of the rRNA operon. Also, homologous twintrons in psbD and psbF to E. gracilis were observed in E. hiemalis. Overall, these results revealed a conserved intrageneric cpGenome for Euglena species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bennett MS, Triemer RE (2015) Chloroplast genome evolution in the Euglenaceae. J Eukaryot Microbiol 62:773–785

    Article  CAS  Google Scholar 

  • Bennett MS, Wiegert KE, Triemer RE (2012) Comparative chloroplast genomics between Euglena viridis and Euglena gracilis (Euglenophyta). Phycologia 51:711–718

    Article  CAS  Google Scholar 

  • Bennett MS, Wiegert KE, Triemer RE (2014) Characterization of Euglenaformis gen. nov. and the chloroplast genome of Euglenaformis [Euglena] proxima (Euglenophyta). Phycologia 53:66–73

    Article  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST: architecture and applications. BMC Bioinformatics 10:421

    Article  Google Scholar 

  • Christopher DA, Hallick RB (1989) Euglena gracilis chloroplast ribosomal protein operon: a new chloroplast gene for ribosomal protein L5 and description of a novel organelle intron category designated group III. Nucleic Acids Res 17:7591–7608

    Article  CAS  Google Scholar 

  • Ciugulea I, Triemer RE (2010) A color atlas of photosynthetic Euglenoids, 1st edn. Michigan State University Press, East Lansing 220–241pp

    Google Scholar 

  • Ciugulea I, Nudelman MA, Brosnan S, Triemer RE (2008) Phylogeny of the euglenoid loricate genera Trachelomonas and Strombomonas (Euglenophyta) inferred from nuclear SSU and LSU rDNA. J Phycol 44:406–418

    Article  CAS  Google Scholar 

  • Conant GC, Wolfe KH (2007) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24:861–862

    Article  Google Scholar 

  • Copertino DW, Hallick RB (1991) Group II twintron: an intron within an intron in a chloroplaast cytochrome b-559 gene. EMBO J 10:433–442

    Article  CAS  Google Scholar 

  • Dabbagh N, Preisfeld A (2017) The chloroplast genome of Euglena mutabilis—cluster arrangement, intron analysis, and intrageneric trends. Eukaryot Microbiol 64:31–44

    Article  CAS  Google Scholar 

  • Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    Article  CAS  Google Scholar 

  • Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193–208

    Article  CAS  Google Scholar 

  • Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351

    Article  CAS  Google Scholar 

  • Hallick RB, Hong L, Drager RG, Favreau MR, Monfort A, Orsat B, Spielmann A, Stutz E (1993) Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537–3544

    Article  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864

    Article  CAS  Google Scholar 

  • Hrdá Š, Fousek J, Szabová J, Hampl V, Vlček Č (2012) The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids. PLoS One 7:e33746

    Article  Google Scholar 

  • Karnkowska A, Bennett MS, Watza D, Kim JI, Zakrys B, Triemer RE (2015) Phylogenetic relationship and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J Eukaryot Microbiol 62:362–373

    Article  CAS  Google Scholar 

  • Kasiborski BA, Bennett MS, Linton EW (2016) The chloroplast genome of Phacus orbicularis (Euglenophyceae): an initial datum point for the Phacaceae. J Phycol 52:404–411

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  Google Scholar 

  • Kim JI, Shin W (2008) Phylogeny of the Euglenales inferred from plastid LSU rDNA sequences. J Phycol 44:994–1000

    Article  Google Scholar 

  • Kim JI, Shin W (2014) Molecular Phylogeny and Cryptic Diversity of the Genus (Phacaceae, Euglenophyceae) and the Descriptions of Seven New Species. J Phycol 50(5):948–959

    Article  CAS  Google Scholar 

  • Kim JI, Shin W, Triemer RE (2010) Multigene analyses of photosynthetic euglenoids and new family, Phacaceae (Euglenales). J Phycol 46:1278–1287

    Article  Google Scholar 

  • Kim JI, Linton EW, Shin W (2015) Taxon-rich multigene phylogeny of the photosynthetic euglenoids (Euglenophyceae). Front Ecol Evol 3:98

  • Kim JI, Linton EW, Shin W (2016) Morphological and genetic diversity of Euglena deses group (Euglenophyceae) with emphasis on cryptic species. Algae 31:219–230

    Article  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  Google Scholar 

  • Leedale GF (1967) Euglenoid flagellates. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Leedale GF (1971) The Euglenoids. In: Head JJ, Lowenstein OE (eds) Oxford biology readers, vol 5. Oxford Univ. Press, London

    Google Scholar 

  • Linton EW, Hittner D, Lewandowski C, Auld T, Triemer RE (1999) A molecular study of euglenoid phylogeny using small subunit rDNA. J Eukaryot Microbiol 46:217–223

    Article  CAS  Google Scholar 

  • Linton EW, Nudelman MA, Conforti V, Triemer RE (2000) A molecular analysis of the euglenophytes using SSU rDNA. J Phycol 36:740–746

    Article  CAS  Google Scholar 

  • Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W, Bennett MS, Kwiatowski J, Zakryś B, Triemer RE (2010) Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta). Protist 161:603–619

    Article  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  Google Scholar 

  • Marin B, Palm A, Klingberg M, Melkonian M (2003) Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure. Protist 154:99–145

    Article  CAS  Google Scholar 

  • Matvienko AM (1938) Contribution to the study of the algae of the UKR. SSR. I. Algae of the sphagnum-swamp “Klukvennoye”. Proc Kharkov State Univ 14:29–70

    Google Scholar 

  • Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D (2010) Tablet—next generation sequence assembly visualization. Bioinformatics 26:401–402

    Article  CAS  Google Scholar 

  • Montegut-Felkner AE, Triemer RE (1997) Phylogenetic relationships of selected euglenoid genera based on morphological and molecular data. J Phycol 33:512–519

    Article  CAS  Google Scholar 

  • Muchhal US, Schwartzbach SD (1994) Characterization of the unique intron–exon junctions of Euglena gene(s) encoding the polyprotein precursor to the light-harvesting chlorophyll a/b binding protein of photosystem II. Nucleic Acids Res 22:5737–5744

    Article  CAS  Google Scholar 

  • Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Finn RD (2015) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–D137

    Article  CAS  Google Scholar 

  • Pombert JF, James ER, Janouškovec J, Keeling PJ (2012) Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome. PLoS One 7:e53433

    Article  CAS  Google Scholar 

  • Skuja H (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsalienses 9:1–399

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennette M, Brosnan S (2006) Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis gen. nov. (Euglenophyta). J Phycol 42:731–740

    Article  Google Scholar 

  • Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C (2009) The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol 26:631–648

    Article  CAS  Google Scholar 

  • Watanabe M M, Kawachi M, Hiroki M, Kasai F (2000) NIES collection list of strains, 6th edn. National Institute for Environmental Studies, Tsukuba. 159 pp.

  • Wiegert KE, Bennett MS, Triemer RE (2012) Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta). Protist 163:832–843

    Article  CAS  Google Scholar 

  • Wiegert KE, Bennett MS, Triemer RE (2013) Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta). J Eukaryot Microbiol 60:214–221

    Article  CAS  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation Microbial Genomics Program (grant no. MCB-0629233) and from Central Michigan Universities’ Faculty Research and Creative Endeavors (grant no. 48898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Linton.

Electronic supplementary material

Table S1

(DOCX 14 kb)

Table S2

(DOCX 14 kb)

Table S3

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hewadikaramge, M.E., Linton, E. Intrageneric chloroplast genome comparison in the genus Euglena (Phylum: Euglenophyta) with annotated chloroplast genomes of Euglena hiemalis and Euglena clara. J Appl Phycol 30, 3167–3177 (2018). https://doi.org/10.1007/s10811-018-1547-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1547-6

Keywords

Navigation