Skip to main content
Log in

Examination of carbohydrate and lipid metabolic changes during Haematococcus pluvialis non-motile cell germination using transcriptome analysis

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

During the complex Haematococcus pluvialis life cycle, germination from non-motile cells to motile cells is the key stage for cell recovery from resting spores. Three phases can be recognized: first, repeated mitotic events; next, cytokinesis to form the zoospore; and finally, a fast release of motile cells. After HiSeq 2000 sequencing of RNA collected at four time points during non-motile cell germination, a total of 2202 differentially expressed genes (DEGs) were identified. In the expression profiles, there is a consistent increase in the expression level of α-amylase and ACAA1 in the entire process, indicating starch and lipid mobilization. In phase 1, two down-regulated genes (fructose-1, 6-bisphosphate aldolase (FBA) and pyruvate kinase (PK)) of glycolysis limited the provision of acetyl-CoA for the TCA cycle, which could be compensated by fatty acid degradation (up-regulation of ACAA1) in the glyoxysome. In phase 2, nine and eight up-regulated enzymes of carbohydrate (glycolysis, TCA cycle, and pentose phosphate pathway) and lipid (fatty acid synthesis and degradation) metabolism, respectively, would increase the metabolic rate and come into a balance between production and consumption of starch and lipid. Till phase 3, the expression of the vast majority of carbohydrate metabolism-related DEGs remained high, while lipid metabolism did not. This suggested that the carbon flux centered on carbohydrate metabolism in this phase. In addition, several isozymes of FBA, GAPDH, PK, and so on were separated by SMART analysis and are postulated to serve different actions during H. pluvialis non-motile cell germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106

    Article  CAS  Google Scholar 

  • Anderson LE, Wang XW, Gibbons JT (1995) Three enzymes of carbon metabolism or their antigenic analogs in pea leaf nuclei. Plant Physiol 108:659–667

    Article  CAS  Google Scholar 

  • Andre C, Benning C (2007) Arabidopsis seedlings deficient in a plastidic pyruvate kinase are unable to utilize seed storage compounds for germination and establishment. Plant Physiol 145:1670–1680

    Article  CAS  Google Scholar 

  • Araujo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR (2012) Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ 35:1–21

    Article  CAS  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  Google Scholar 

  • Damiani MC, Leonardi PI, Pieroni OI, Caceres EJ (2006) Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616–623

    Article  Google Scholar 

  • Deng X, Cai J, Fei X (2013) Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii. BMC Biochem 14:38

    Article  Google Scholar 

  • Droop MR (1953) On the ecology of flagellates from some brackish and fresh water rockpools of Finland. Acta Bot Fenn 51:3–52

    Google Scholar 

  • Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci 6:72–77

    Article  CAS  Google Scholar 

  • Elliot A (1934) Morphology and life history of Haematococcus pluvialis. Arch Protistenkd 82:250–272

    Google Scholar 

  • Fatland BL, Nikolau BJ, Wurtele ES (2005) Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell 17:182–203

    Article  CAS  Google Scholar 

  • Gao ZQ, Meng CX, Gao HZ, Zhang XW, Xu D, Su YF, Wang YY, Zhao YR, Ye NH (2013) Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR). Biol Res 46:201–206

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–U130

    Article  CAS  Google Scholar 

  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  CAS  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  Google Scholar 

  • Hagen C, Siegmund S, Braune W (2002) Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur J Phycol 37:217–226

    Article  Google Scholar 

  • Ho SH, Nakanishi A, Kato Y, Yamasaki H, Chang JS, Misawa N, Hirose Y, Minagawa J, Hasunuma T, Kondo A (2017) Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci Rep 7:45471

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  Google Scholar 

  • Knowles VL, McHugh SG, Hu Z, Dennis DT, Miki BL, Plaxton WC (1998) Altered growth of transgenic tobacco lacking leaf cytosolic pyruvate kinase. Plant Physiol 116:45–51

    Article  CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Kakizono T, Nishio N, Tsuji Y (1997) Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J Ferment Bioeng 84:94–97

    Article  CAS  Google Scholar 

  • Kochetov GA, Solovjeva ON (2014) Structure and functioning mechanism of transketolase. Biochim Biphys Acta Proteins Proteom 1844:1608–1618

    Article  CAS  Google Scholar 

  • Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34(Database issue):D257–D260

    Article  CAS  Google Scholar 

  • Liu J, Zhang J (2000) Photosynthetic and respiration rate of Haematococcus pluvialis. Oceanol Limnol Sinica 31(5):490–495

    CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Luethy MH, Miernyk JA, David NR, Randall DD (1996) Plant pyruvate dehydrogenase complexes. In: Patel MS, Roche TE, Harris RA (eds) Alpha-keto acid dehydrogenase complexes. MCBU molecular and cell biology updates. Birkhäuser, Basel, pp 71–92

    Chapter  Google Scholar 

  • Lund JWG, Fryxell GAE (1984) Survival strategies of the algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Lv GY, Guo XG, Xie LP, Xie CG, Zhang XH, Yang Y, Xiao L, Tang YY, Pan XL, Guo AG, Xu H (2017) Molecular characterization, gene evolution, and expression analysis of the fructose-1,6-bisphosphate aldolase (FBA) gene family in wheat (Triticum aestivum L.). Front Plant Sci 8:1030

    Article  Google Scholar 

  • Miltiadou D, Hager-Theodorides AC, Symeou S, Constantinou C, Psifidi A, Banos G, Tzamaloukas O (2017) Variants in the 3′ untranslated region of the ovine acetyl-coenzyme A acyltransferase 2 gene are associated with dairy traits and exhibit differential allelic expression. J Dairy Sci 100:6285–6297

    Article  CAS  Google Scholar 

  • Mooney BP, Miernyk JA, Randall DD (1999) Cloning and characterization of the dihydrolipoamide S-acetyltransferase subunit of the plastid pyruvate dehydrogenase complex (E2) from Arabidopsis. Plant Physiol 120:443–452

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  Google Scholar 

  • O'Brien MJ, Powls R (1976) Algal glyceraldehyde-3-phosphate dehydrogenase. Pyridine-nucleotide requirements of two enzymes purified from Scenedesmus obliquus. Eur J Biochem 63:155–161

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  CAS  Google Scholar 

  • Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P (2012) eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 40(D1):D284–D289

    Article  CAS  Google Scholar 

  • Proctor VW (1957) Some controlling factors in the distribution of Haematococcus pluvialis. J Ecol 38:457–462

    Article  Google Scholar 

  • Quan S, Yang P, Cassin-Ross G, Kaur N, Switzenberg R, Aung K, Li J, Hu J (2013) Proteome analysis of peroxisomes from etiolated Arabidopsis seedlings identifies a peroxisomal protease involved in beta-oxidation and development. Plant Physiol 163:1518–1538

    Article  CAS  Google Scholar 

  • Randall DD, Miernyk JA, Fang TK, Budde RJ, Schuller KA (1989) Regulation of the pyruvate dehydrogenase complexes in plants. Ann N Y Acad Sci 573:192–205

    Article  CAS  Google Scholar 

  • Recht L, Topfer N, Batushansky A, Sikron N, Gibon Y, Fait A, Nikoloski Z, Boussiba S, Zarka A (2014) Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. J Biol Chem 289:30387–30403

    Article  CAS  Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68:1175–1184

    Article  CAS  Google Scholar 

  • Schenk G, Duggleby RG, Nixon PF (1998) Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 30:1297–1318

    Article  CAS  Google Scholar 

  • Shah MM, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531

    PubMed  PubMed Central  Google Scholar 

  • Shaik SS, Carciofi M, Martens HJ, Hebelstrup KH, Blennow A (2014) Starch bioengineering affects cereal grain germination and seedling establishment. J Exp Bot 65:2257–2270

    Article  CAS  Google Scholar 

  • Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, Olin-Sandoval V, Gruning NM, Kruger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 90:927–963

    Article  Google Scholar 

  • Tuncay H, Findinier J, Duchene T, Cogez V, Cousin C, Peltier G, Ball SG, Dauvillee D (2013) A forward genetic approach in Chlamydomonas reinhardtii as a strategy for exploring starch catabolism. PLoS One 8(9):e74763

    Article  CAS  Google Scholar 

  • Wang B, Zhang Z, Hu Q, Sommerfeld M, Lu Y, Han D (2014) Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga Haematococcus pluvialis. PLoS One 9(9):e106679

    Article  Google Scholar 

  • Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S (2013) Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One 8(1):e53618

    Article  CAS  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takriff MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res-Thessalon 21(1):6

    Article  Google Scholar 

  • Zhang BY, Geng YH, Li ZK, Hu HJ, Li YG (2009) Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275–281

    Article  CAS  Google Scholar 

  • Zhang C, Zhang L, Liu J (2016) The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae). Plant Physiol Biochem 107:75–81

    Article  Google Scholar 

  • Zhang C, Liu J, Zhang L (2017) Cell cycles and proliferation patterns in Haematococcus pluvialis. Chin J Oceanol Limnol 35:1205–1211

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31702366 and 31572639). We thank Shanghai Personal Biotechnology Co., Ltd. (Shanghai, China) for Illumina transcriptome sequencing and initial data analysis. We thank Ling Li, Fang Su, and Chunhui Zhang for their work in cultivation and collection of alga. Special thanks to Dr. John van der Meer (Pan-American Marine Biotechnology Association) for his assistance with proofreading.

Author information

Authors and Affiliations

Authors

Contributions

This study was designed by QL and JL. QL performed the experiments. QL and LZ analyzed the data. QL and JL wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianguo Liu.

Ethics declarations

Competing interests

The authors state this research is free of conflicts of interests.

Electronic supplementary material

ESM 1

(DOCX 260 kb)

ESM 2

(XLSX 29 kb)

Table S4

(XLSX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, L. & Liu, J. Examination of carbohydrate and lipid metabolic changes during Haematococcus pluvialis non-motile cell germination using transcriptome analysis. J Appl Phycol 31, 145–156 (2019). https://doi.org/10.1007/s10811-018-1524-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1524-0

Keywords

Navigation