Skip to main content
Log in

Equilibrium and kinetic modeling for biosorption of Au(III) on freshwater microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae have been considered as a promising biosorbent for recovery of precious metal ions from diluted aqueous solutions; especially the self-flocculating microalga has the potential for cost-effective harvesting of tiny microalgae. In this study, the adsorption of Au(III) by the self-flocculating microalgae Tetradesmus obliquus and non-flocculating T. obliquus as a control was studied in different initial Au(III) concentrations, temperatures, and pH. The adsorption equilibrium by the tested microalgae fitted well to the Langmuir model at different temperatures. The maximum adsorption capacity from the Langmuir model for T. obliquus AS-6-1 was 169.49 mg g−1 obtained at pH 2.0 and 30 °C, which was higher than that observed by the non-flocculating T. obliquus with 153.85 mg g−1. Furthermore, all the Kd values above 5000 mL g−1 at 30 °C for T. obliquus AS-6-1 showed that the flocculating microalgae had a stronger adsorption affinity to Au(III). The initial Au(III) concentration and solution pH significantly affected the adsorption capacity of Au(III) on algal species. While, their adsorption of Au(III) was slightly influenced at temperature from 30 to 40 °C but significantly influenced and decreased at low (≤ 7 °C) or high temperature (≥ 60 °C). The experimental data fitted well to the second-order kinetic model, which indicated that the adsorption reaction on the surface of adsorbent was the rate-limiting step, instead of mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper (II) by C. vulgaris and Z. ramigera. Environ Technol 13:579–586

    Article  CAS  Google Scholar 

  • Alam MA, Wan C, Zhao XQ, Chen LJ, Chang JS, Bai FW (2015) Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7. J Hazard Mater 289:38–45

    Article  CAS  Google Scholar 

  • Al-Saidi HM (2016) The fast recovery of Au(III) ions from aqueous solutions using raw date pits: kinetic, thermodynamic and equilibrium studies. J Saudi Chem Soc 20:615–624

    Article  CAS  Google Scholar 

  • Arrascue ML, Garcia HM, Horna O, Guibal E (2003) Gold sorption on chitosan derivatives. Hydrometallurgy 71:191–200

    Article  CAS  Google Scholar 

  • Birungi ZS, Chirwa EMN (2015) The adsorption potential and recovery of thallium using green microalgae from eutrophic water sources. J Hazard Mater 299:67–77

    Article  CAS  Google Scholar 

  • Birungi ZS, Chirwa EMN (2017) Competitive adsorption in a ternary system of toxic metals and rare earth elements using Desmodesmus multivariabilis: empirical and kinetic modelling. J Appl Phycol 29:2899–2910

    Article  CAS  Google Scholar 

  • Chen CY, Kao AL, Tsai ZC, Chow TJ, Chang HY, Zhao XQ, Chen PT, Su HY, Chang JS (2016) Expression of type 2 diacylglycerol acyltransferse gene DGTT1 from Chlamydomonas reinhardtii enhances lipid production in Scenedesmus obliquus. Biotechnol J 11:336–344

    Article  CAS  Google Scholar 

  • Chiou MS, Li HY (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93:233–248

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  Google Scholar 

  • Das N (2010) Recovery of precious metals through biosorption—a review. Hydrometallurgy 103:180–189

    Article  CAS  Google Scholar 

  • Esposito A, Pagnanelli F, Veglio F (2002) pH related equilibria models for biosorption in single metal system. Chem Eng Sci 57:307–313

    Article  CAS  Google Scholar 

  • Fiol N, Villaescusa I, Martinez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep Purif Technol 50:132–140

    Article  CAS  Google Scholar 

  • Fujiwara K, Ramesh A, Maki T, Hasegawa H, Ueda K (2007) Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions on l-lysine modified crosslinked chitosan resin. J Hazard Mater 146:39–50

    Article  CAS  Google Scholar 

  • Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL, Alam MA, Ho SH, Bai FW, Chang JS (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742

    Article  CAS  Google Scholar 

  • Ishikawa SI, Suyama K, Arihara K, Itoh M (2002) Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresour Technol 81:201–206

    Article  CAS  Google Scholar 

  • Ju XH, Igarashi KI, Miyashita S, Mitsuhashi H, Fujii S, Sawada H, Minoda A (2016) Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria. Bioresour Technol 211:759–764

    Article  CAS  Google Scholar 

  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae—a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  Google Scholar 

  • Lawal OS, Sanni AR, Ajayi IA, Rabiu OO (2010) Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II) ions onto the seed husk of Calophyllum inophyllum. J Hazard Mater 177:829–835

    Article  CAS  Google Scholar 

  • Liu Y (2008) New insights into pseudo-second-order kinetic equation for adsorption. Colloids Surf A Physicochem Eng Asp 320:275–278

    Article  CAS  Google Scholar 

  • Mack C, Wilhelmi B, Duncan JR, Burgess JE (2007) Biosorption of precious metals. Biotechnol Adv 25:264–271

    Article  CAS  Google Scholar 

  • Njikam E, Schiewer S (2012) Optimization and kinetic modeling of cadmium desorption from citrus peels: a process for biosorbent regeneration. J Hazard Mater 214:242–248

    Article  Google Scholar 

  • Oliveira RC, Guibal E, Garcia O Jr (2012) Biosorption and desorption of lanthanum (III) and neodymium (III) in fixed-bed columns with Sargassum sp.: perspectives for separation of rare earth metals. Biotechnol Prog 28:715–722

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102

    Article  CAS  Google Scholar 

  • Sangvanich V, Sukwarotwat RJ, Wiacek RM, Grudzien GE, Fryxell RS, Addleman et al (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231

    Article  CAS  Google Scholar 

  • Ting YP, Mittal AK (2002) Effect of pH on the biosorption of gold by a fungal biosorbent. Resour Environ Biotechnol 3:229–239

    CAS  Google Scholar 

  • Ting YP, Teo WK, Soh CY (1995) Gold uptake by Chlorella vulgaris. J Appl Phycol 7:97–100

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Mahadevan A, Sathishkumar M, Pavagadhi S, Balasubramanian R (2011) Biosynthesis of Au(0) from Au(III) via biosorption and bioreduction using brown marine alga Turbinaria conoides. Chem Eng J 167:223–227

    Article  CAS  Google Scholar 

  • Won SW, Kotte P, Wei W, Lim A, Yun YS (2014) Biosorbents for recovery of precious metals. Bioresour Technol 160:203–212

    Article  CAS  Google Scholar 

  • Zhang XY, Zhao XQ, Wan C, Chen B, Bai FW (2016) Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res 16:427–433

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Sedibeng Water, South Africa and the Water Utilization and Environmental Engineering Division at the University of Pretoria for financial and logistical support during the study of gold recovery by microalgae, and appreciate the kind help of Professor Xin-Qing Zhao in Shanghai Jiao Tong University and Professor Jo-Shu Chang in National Cheng Kung University, Taiwan for providing the microalgae strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, N., Chirwa, E.M.N. Equilibrium and kinetic modeling for biosorption of Au(III) on freshwater microalgae. J Appl Phycol 30, 3493–3502 (2018). https://doi.org/10.1007/s10811-018-1479-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1479-1

Keywords

Navigation