Journal of Applied Phycology

, Volume 30, Issue 4, pp 2259–2271 | Cite as

Elucidating the role of nutrients in C-phycocyanin production by the halophilic cyanobacterium Euhalothece sp.

  • Trisha Mogany
  • Feroz Mahomed Swalaha
  • Sheena Kumari
  • Faizal Bux


In this study, a novel halophilic cyanobacterium was isolated and identified as Euhalothece sp. KZN. This fast-growing strain had the ability to synthesise high yields (12 mg g−1) of C-phycocyanin (C-PC), a highly fluorescent blue light-harvesting pigment with numerous potential uses in the biotechnology and commercial sectors. This study elucidated the individual and interactive role of different nutrients in BG11 growth medium for enhancing C-PC production in Euhalothece sp. KZN. Nine components of BG11 medium were screened for their effects via fractional factorial design (FFD). The results revealed a significant influence of nutrients, viz. MgSO4, NaNO3 and minor nutrients (citric acid, EDTA-iron citrate, CaCl2 and Na2CO3) on C-PC yield. These three components were further explored for their optimum concentration for enhancing C-PC production using a central composite design. The optimum values for these essential nutrients were found to be as follows: 0.10 g L−1 of MgSO4, 1.67 g L−1 of NaNO3 and 10 mL L−1 of minor nutrients which resulted in a 280% increase in C-PC yield with predicted and actual values of 43.97 and 45 mg g−1, respectively. Euhalothece sp. KZN is a strong potential candidate for C-PC production and can be further exploited to produce this industrially valuable compound.


Euhalothece sp. Cyanobacteria C-phycocyanin Pigment Nutrients Design of experiments 



We thank our colleagues at the Institute for Water and Wastewater Technology (IWWT), Durban University of Technology (DUT), for their support and guidance.

Funding information

This work was supported by the grant from the National Research Foundation, for which the authors are thankful.

Supplementary material

10811_2018_1477_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)
10811_2018_1477_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 16 kb)
10811_2018_1477_MOESM3_ESM.docx (1.5 mb)
ESM 3 (DOCX 1527 kb)


  1. Allen MM, Stanier RY (1968) Growth and division of some unicellular blue-green algae. J Gen Microbiol 51:199–202CrossRefPubMedGoogle Scholar
  2. Alvey RM, Biswas A, Schluchter WM, Bryant DA (2011) Effects of modified phycobilin biosynthesis in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 193:1663–1671CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aoki R, Goto T, Fujita Y (2011) A heme oxygenase isoform is essential for aerobic growth in the cyanobacterium Synechocystis sp. PCC 6803: modes of differential operation of two isoforms/enzymes to adapt to low oxygen environments in cyanobacteria. Plant Cell Physiol 52:1744–1756CrossRefPubMedGoogle Scholar
  4. Bandyopadhyay A, Elvitigala T, Welsh E, Stockel J, Liberton M, Min H, Sherman LA, Pakrasi HB (2011) Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece. mBio 2(5).
  5. Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73CrossRefGoogle Scholar
  6. Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bryant DA, Guglielmi G, de Marsac NT, Castets A-M, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127CrossRefGoogle Scholar
  8. Burrows E, Chaplen F, Ely R (2008) Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. Int J Hydrog Energy 33:6092–6099CrossRefGoogle Scholar
  9. Chakdar H, Pabbi S (2016) Cyanobacterial phycobilins: production, purification, and regulation. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer India, New Delhi, pp 45–69CrossRefGoogle Scholar
  10. Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum—a prospective phycobiliprotein-producing strain. J Appl Phycol 19:537–544CrossRefGoogle Scholar
  11. Chang L, Liu X, Li Y, Liu CC, Yang F, Zhao J, Sui SF (2015) Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res 25:726–737CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chow F (2012) Nitrate assimilation: the role of in vitro nitrate reductase assay as nutritional predictor. In: Najafpour M (ed) Applied photosynthesis, vol 6. InTech, Rijeka, pp 726–737Google Scholar
  13. Cosner JC (1978) Phycobilisomes in spheroplasts of Anacystis nidulans. J Bacteriol 135:1137–1140PubMedPubMedCentralGoogle Scholar
  14. Czarnecki O, Grimm B (2012) Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. J Exp Bot 63:1675–1687CrossRefPubMedGoogle Scholar
  15. Deshmukh DV, Puranik PR (2010) Application of Plackett-Burman design to evaluate media components affecting antibacterial activity of alkaliphilic cyanobacteria isolated from Lonar Lake. Turk J Biochem 35:114–120Google Scholar
  16. Deshmukh DV, Puranik PR (2012) Statistical evaluation of nutritional components impacting phycocyanin production in Synechocystis sp. Braz J Microbiol 43:348–355CrossRefPubMedPubMedCentralGoogle Scholar
  17. Eisenhut M, Aguirre von Wobeser E, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HC, Hagemann M (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144:1946–1959CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eriksen NT (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14CrossRefPubMedGoogle Scholar
  19. Esen M, Ozturk Urek R (2015) Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis. Biotechnol Appl Biochem:62275–62286Google Scholar
  20. Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, pp 487–517CrossRefGoogle Scholar
  21. Frankenberg N, Lagarias JC (2003) Phycocyanobilin:ferredoxin oxidoreductase of Anabaena sp. PCC 7120. Biochemical and spectroscopic. J Biol Chem 278:9219–9226CrossRefPubMedGoogle Scholar
  22. Garcia-Pichel F, Nubel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482CrossRefPubMedGoogle Scholar
  23. Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112CrossRefGoogle Scholar
  24. Gray BH, Lipschultz CA, Gantt E (1973) Phycobilisomes from a blue-green alga Nostoc species. J Bacteriol 116:471–478PubMedPubMedCentralGoogle Scholar
  25. Hazra P, Saha Kesh G (2017) Isolation and purification of phycocyanin from cyanobacteria of a mangrove forest. Appl Biol Chem 60:631–636CrossRefGoogle Scholar
  26. Herrero A, Vega-Palas MA, Martín-Nieto J, Muro-Pastor AM, Madueño F, Flores E (1990) Molecular biology of the assimilation of nitrogenous compounds by cyanobacteria. In: Ullrich R, Rigano C, Figgi A, Aparicio PJ (eds) Inorganic nitrogen in plants and microorganisms. Springer, Berlin, pp 308–311CrossRefGoogle Scholar
  27. Hong S-J, Lee C-G (2008) Statistical optimization of culture media for production of phycobiliprotein by Synechocystis sp. PCC 6701. Biotechnol Bioprocess Eng 13:491–498CrossRefGoogle Scholar
  28. Jaffee EK (2003) An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem Biol 10:25–34CrossRefGoogle Scholar
  29. Johnson EM, Kumar K, Das D (2014) Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresour Technol 166:541–547CrossRefPubMedGoogle Scholar
  30. Kannaujiya VK, Sundaram S, Sinha RP (2017) Phycobiliproteins: recent developments and future applications. Springer, SingaporeCrossRefGoogle Scholar
  31. Kaushal S, Singh Y, Khattar JIS, Singh DP (2017) Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1. J Appl Phycol 29:1819–1827CrossRefGoogle Scholar
  32. Kenekar AA, Deodhar MA (2013) Effect of varying physicochemical parameters on the productivity and phycobiliprotein content of indigenous isolate Geitlerinema sulphureum. Biotechnol Bioprocess Eng 12:146–154Google Scholar
  33. Komárek J (2016) A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur J Phycol 51:346–353CrossRefGoogle Scholar
  34. Komárek J, Kaštovsky′ J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 86:295–335Google Scholar
  35. Kuddus M, Singh P, Thomas G, Al-Hazimi A (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed Res Int.
  36. Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598CrossRefPubMedPubMedCentralGoogle Scholar
  37. Leu J-Y, Lin T-H, Selvamani MJP, Chen H-C, Liang J-Z, Pan K-M (2013) Characterization of a novel thermophilic cyanobacterial strain from Taian hot springs in Taiwan for high CO2 mitigation and C-phycocyanin extraction. Process Biochem 48:41–48CrossRefGoogle Scholar
  38. Li D-H, Yang S-Z, Li H, Xie J, Zhao J-Q (2004) Monolayer film of phycobilisome-thylakoid membrane complexes from Spirulina platensis. Photosynthetica 42:365–370CrossRefGoogle Scholar
  39. Liotenberg S, Campbell D, Rippka R, Houmard J, Marsac NT (1996) Effect of the nitrogen source on phycobiliprotein synthesis and cell reserves in a chromatically adapting filamentous cyanobacterium. Microbiology 142:611–622CrossRefPubMedGoogle Scholar
  40. Loza V, Perona E, Carmona J, Mateo P (2013) Phenotypic and genotypic characteristics of Phormidium-like cyanobacteria inhabiting microbial mats are correlated with the trophic status of running waters. Eur J Phycol 48:35–252CrossRefGoogle Scholar
  41. Ludwig M, Bryant DA (2012) Acclimation of the global transcriptome of the cyanobacterium Synechococcus sp. strain PCC 7002 to nutrient limitations and different nitrogen sources. Front Microbiol 3:1–15Google Scholar
  42. Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K (2016) Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296CrossRefGoogle Scholar
  43. Margheri MC, Bosco M, Giovannetti L, Ventura S (1999) Assessment of the genetic diversity of halotolerant coccoid cyanobacteria using amplified 16S rDNA restriction analysis. FEMS Microbiol Lett 177(1): 9–16CrossRefGoogle Scholar
  44. McKay CP, Rask JC, Detweiler AM, Bebout BM, Everroad RC, Lee JZ, Chanton JP, Mayer MH, Caraballo AA, Kapil B, Al-Awar M, Al-Farraj A (2016) An unusual inverted saline microbial mat community in an interdune sabkha in the rub’ al khali (the empty quarter), United Arab Emirates. PloS one 11(3):e0150342. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mikhodiuk OS, Gerasimenko LM, Akimov VN, Ivanovskii RN, Zavarzin GA (2008) Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi. Mikrobiologiia 77:805–813PubMedGoogle Scholar
  46. Montellano PR (2000) The mechanism of heme oxygenase. Curr Opin Chem Biol 4:221–227CrossRefPubMedGoogle Scholar
  47. Montogomery DC (2012) Design and analysis of experiments, 8th edn. Willey, New YorkGoogle Scholar
  48. Moraes IO, Arruda ROM, Maresca NR, Antunes AO, Moraes RO (2013) Spirulina platensis: process optimization to obtain biomass. J Food Sci Technol 33:179–183CrossRefGoogle Scholar
  49. Myers RH, Montgomery DC, Anderson-Cook C (2009) Response surface methodology: process and product optimization using designed experiment, 8th edn. Wiley, HobokenGoogle Scholar
  50. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedPubMedCentralGoogle Scholar
  51. Pandey U, Pandey J (2008) Enhanced production of biomass, pigments and antioxidant capacity of a nutritionally important cyanobacterium Nostochopsis lobatus. Bioresour Technol 99:4520–4523CrossRefPubMedGoogle Scholar
  52. Patel A, Mishra S, Pawar R, Ghosh PK (2005) Purification and characterization of C-phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr Purif 40:248–255CrossRefPubMedGoogle Scholar
  53. Porta D, Rippka R, Hernández-Mariné M (2000) Unusual ultrastructural features in three strains of Cyanothece (cyanobacteria). Arch Microbiol 173:154–163CrossRefPubMedGoogle Scholar
  54. Prasanna R, Pabby A, Saxena S, Singh PK (2004) Modulation of pigment profiles of Calothrix elenkenii in response to environmental changes. J Plant Physiol 161:1125–1132CrossRefPubMedGoogle Scholar
  55. Ramos V, Morais J, Vasconcelos VM (2017) A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci Data 4:170054CrossRefPubMedPubMedCentralGoogle Scholar
  56. Richaud C, Zabulon G, Joder A, Thomas J-C (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989–2994CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  58. Rodríguez-Sánchez R, Ortiz-Butrón R, Blas-Valdivia V, Hernández-García A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem 135:2359–2365CrossRefPubMedGoogle Scholar
  59. Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514CrossRefPubMedGoogle Scholar
  60. Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136CrossRefGoogle Scholar
  61. Shoolingin-Jordan PM, Spencer P, Sarwar M, Erskine PE, Cheung KM, Cooper JB, Norton EB (2002) 5-Aminolaevulinic acid dehydratase: metals, mutants and mechanism. Biochem Soc Trans 30:584–590CrossRefPubMedGoogle Scholar
  62. Singh AK, McIntyre LM, Sherman LA (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132:1825–1839CrossRefPubMedPubMedCentralGoogle Scholar
  63. Singh NK, Parmar A, Madamwar D (2009) Optimization of medium components for increased production of C-phycocyanin from Phormidium ceylanicum and its purification by single step process. Bioresour Technol 100:1663–1669CrossRefPubMedGoogle Scholar
  64. Singh NK, Parmar A, Sonani RR, Madamwar D (2012) Isolation, identification and characterization of novel thermotolerant Oscillatoria sp. N9DM: change in pigmentation profile in response to temperature. Process Biochem 47:2472–2479CrossRefGoogle Scholar
  65. Spiller SC, Castelfranco AM, Castelfranco PA (1982) Effects of iron and oxygen on chlorophyll biosynthesis: I. In vivo observations on iron and oxygen-deficient plants. Plant Physiol 69:107–111CrossRefPubMedPubMedCentralGoogle Scholar
  66. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205PubMedPubMedCentralGoogle Scholar
  67. Stöckel J, Elvitigala TR, Liberton M, Pakrasi HB (2013) Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142. PLoS One 8(2):e56887CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sun L, Wang S, Gong X, Zhao M, Fu X, Wang L (2009a) Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expr Purif 64:146–154CrossRefPubMedGoogle Scholar
  69. Sun L, Wang S, Zhao M, Fu X (2009b) Phycobilisomes from cyanobacteria. Handbook on cyanobacteria: biochemistry, biotechnology and applications. Nova Science Publishers, Inc, New YorkGoogle Scholar
  70. Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 104:119–189CrossRefGoogle Scholar
  71. Tooley AJ, Cai YA, Glazer AN (2001) Biosynthesis of a fluorescent cyanobacterial C-phycocyanin holo-alpha subunit in a heterologous host. Proc Natl Acad Sci U S A 98:10560–10565CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tu SL, Gunn A, Toney MD, Britt RD, Lagarias JC (2004) Biliverdin reduction by cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates. J Am Chem Soc 126:8682–8693CrossRefPubMedGoogle Scholar
  73. Venkata Ramana Reddy MB, Lakshmana Rao SS, Rao CS (2015) Optimization of process parameters and media components to increase the biomass of cyanobacteria (blue-green algae) Anabaena ambigua using response surface methodology. Asian J Microbiol Biotechnol Environ Sci 17:215–225Google Scholar
  74. Wakte PS, Mohite YS, Bhusare DU (2011) Influence of metal ions on growth and C-phycocyanin production in Arthrospira (Spirulina) platensis. Recent Res Sci Technol 3(5):104–108Google Scholar
  75. Walsby AE, Rijn JV, Cohen Y (1983) The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp.nov., in Solar Lake. Proc R Soc Lond B 217:417–447CrossRefGoogle Scholar
  76. Wang C, Kong HN, Wang XZ, Wu HD, Lin Y, He SB (2010) Effects of iron on growth and intracellular chemical contents of Microcystis aeruginosa. Biomed Environ Sci 23:48–52CrossRefPubMedGoogle Scholar
  77. Waterbury JB, Rippka R (1989) Subsection I. Order Chlorococcales Wettstein 1924, emend. Rippka et al. 1979. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1728–1746Google Scholar
  78. Waterbury JB, Stanier RY (1981) Isolation and growth of cyanobacteria from marine and hypersaline environments. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Springer, Berlin, pp 221–223CrossRefGoogle Scholar
  79. Wiethaus J, Busch AWU, Dammeyer T, Frankenberg-Dinkel N (2010) Phycobiliproteins in Prochlorococcus marinus: biosynthesis of pigments and their assembly into proteins. Eur J Cell Biol 89:1005–1010CrossRefPubMedGoogle Scholar
  80. Xie Y, Jin Y, Zeng X, Chen J, Lu Y, Jing K (2015) Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresour Technol 180:281–287CrossRefPubMedGoogle Scholar
  81. Yi Z-W, Huang H, Kuang T-Y, Sui S-F (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573CrossRefPubMedGoogle Scholar
  82. Zhang Y, Chi Z, Lu W (2007) Exopolysaccharide production by four cyanobacterial isolates and preliminary identification of these isolates. J Ocean Univ China 6:147–152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Trisha Mogany
    • 1
  • Feroz Mahomed Swalaha
    • 2
  • Sheena Kumari
    • 1
  • Faizal Bux
    • 1
  1. 1.Institute for Water and Wastewater TechnologyDurban University of TechnologyDurbanSouth Africa
  2. 2.Department of Biotechnology and Food TechnologyDurban University of TechnologyDurbanSouth Africa

Personalised recommendations