Skip to main content
Log in

Turbulent mixing mediates the photosynthetic activities and biochemical composition of Anabaena: implications for bioengineering

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacteria exhibit a variety of adaptive strategies that allow them to thrive in ever-changing aquatic environments. Here, successive steady states of continuous cultures were used to investigate the effects of quantified turbulence on the biochemical compounds and physiological processes of Anabaena flos-aquae in a photobioreactor under different dilution rates. A rapid increase in cell density was clearly observed following an increase in the turbulent dissipation rate at all growth rates of A. flos-aquae. The photosynthetic response to irradiance curves showed that the turbulence-treated strains exhibited lower photosynthetic oxygen evolution and saturating irradiance as well as higher respiration in rapidly growing young cells, indicating that they might not be very adaptable to high turbulent dissipation rates. Additionally, there was an increase in the protein levels of A. flos-aquae with increasing turbulence at all growth rates, whereas carbohydrate formation and lipid accumulation demonstrated the opposite trends. At a high growth rate, the level of carbohydrates decreased whereas that of lipids increased, which was interpreted as reflecting an adaptation to the turbulent environment. These findings suggest that turbulence sensitivity is shear regimen- and growth rate-dependent in A. flos-aquae. The high respiration capacity, low saturating irradiance, and conversion of carbohydrates to lipids represent effective measures for revealing the adaptive strategies of rapidly growing young cells under hydrodynamic regimes. The results regarding optimum lipid accumulation with specific growth traits have important implications for the design of cultivation methods of cyanobacteria resource utilization with respect to regulating turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407

    Article  PubMed  CAS  Google Scholar 

  • Çelekli A, Arslanargun H, Soysal Ç, Gültekin E, Bozkurt H (2016) Biochemical responses of filamentous algae in different aquatic ecosystems in South East Turkey and associated water quality parameters. Ecotoxicol Environ Saf 133:403–412

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Yan X, Xu J, Su X, Li L (2013) Lipidomic profiling and discovery of lipid biomarkers in Stephanodiscus sp. under cold stress. Metabolomics 9:949–959

    Article  CAS  Google Scholar 

  • Chengala A, Hondzo M, Mashek DG (2013) Fluid motion mediates biochemical composition and physiological aspects in the green alga Dunaliella primolecta Butcher. Limnol Oceanogr Fluids Environ 3:74–88

    Article  Google Scholar 

  • Chisti Y (2010) Shear sensitivity. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 4360–4398

    Google Scholar 

  • Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53:126–131

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Grobbelaar JU (1994) Turbulence in algal mass cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Article  Google Scholar 

  • Grondahl F (2009) Removal of surface blooms of the cyanobacteria Nodularia spumigena: a pilot project conducted in the Baltic Sea. Ambio 38:79–84

    Article  PubMed  Google Scholar 

  • Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic microorganisms. Annu Rev Fluid Mech 44:373–400

    Article  Google Scholar 

  • Guedes AC, Katkam NG, Varela J, Malcata FX (2014) Photobioreactors for cyanobacterial culturing. In: Sharma NK, Rai AK, Stal LJ (eds) Cyanobacteria: an economic perspective. Wiley, New York, pp 270–292

    Google Scholar 

  • Han F, Pei H, Hu W, Song MM, Ma GX, Pei RT (2015) Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Convers Manag 90:315–322

    Article  CAS  Google Scholar 

  • Hansen TJ, Hondzo M, Mashek MT, Mashek DG, Lefebvre PA (2013) Algal swimming velocities signal fatty acid accumulation. Biotechnol Bioeng 110:143–152

    Article  PubMed  CAS  Google Scholar 

  • Hondzo M, Wüest A (2009) Do microscopic organisms feel turbulent flows? Environ Sci Technol 43:764–768

    Article  PubMed  CAS  Google Scholar 

  • Karp-Boss L, Boss E, Jumars PA (1996) Nutrients fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol 34:71–107

    Google Scholar 

  • Klok AJ, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2014) Edible oils from microalgae: insights in TAG accumulation. Trends Biotechnol 32:521–582

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Biswas K, Singh PK, Singh PK, Elumalai S, Shukla P, Pabbi S (2017) Lipid production and molecular dynamics simulation for regulation of accD gene in cyanobacteria under different N and P regimes. Biotechnol Biofuels 10:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Leupold M, Hindersin S, Gust G, Kerner M, Hanelt D (2013) Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. J Appl Phycol 25:485–495

    Article  CAS  Google Scholar 

  • Li YT, Han DX, Hu GR, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268

    Article  PubMed  CAS  Google Scholar 

  • Li YT, Han DX, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  PubMed  CAS  Google Scholar 

  • Litchman E, de Tezanos Pinto P, Klausmeier CA, Thomas MK, Yoshiyama K (2010) Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653:15–28

    Article  CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5:12–17

    Article  PubMed  CAS  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    Article  PubMed  CAS  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    Article  PubMed  CAS  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in eukaryotes. New Phytol 188:67–81

    Article  PubMed  CAS  Google Scholar 

  • Michels MHA, van der Goot AJ, Vermuë MH, Wijffels RH (2016) Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump. J Appl Phycol 28:53–62

    Article  PubMed  CAS  Google Scholar 

  • Mirón AS, Cerón García MC, Contreras Gómez A, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  CAS  Google Scholar 

  • Moisander PH, Hench JL, Kononen K, Paerl HW (2002) Small-scale shear effects on heterocystous cyanobacteria. Limnol Oceanogr 47:108–119

    Article  Google Scholar 

  • Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Beih Ergebn Limnol 14:14–36

    CAS  Google Scholar 

  • Olesen TD, Ganf GG (1986) Photosynthate partitioning: a labile, adaptive phenomenon in Microcystis aeruginosa. Arch Hydrobiol 108:55–76

    CAS  Google Scholar 

  • Oliver RL, Hamilton DP, Brookes JD, Ganf GG (2012) Physiology, blooms and prediction of planktonic cyanobacteria. In: Whitton BA (ed) Ecology of cyanobacteria II. Springer, Dordrecht, pp 155–194

    Chapter  Google Scholar 

  • Paerl H, Otten T (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010

    Article  PubMed  CAS  Google Scholar 

  • Pandit PR, Fulekar MH, Karuna MS (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environ Sci Pollut Res Int 24:13437–13451

    Article  PubMed  CAS  Google Scholar 

  • Peters F, Marrasé C (2000) Effects of turbulence on plankton: an overview of experimental evidence and some theoretical considerations. Mar Ecol Prog Ser 205:291–306

    Article  Google Scholar 

  • Prairie JC, Sutherland KR, Nickols KJ, Kaltenberg AM (2012) Biophysical interactions in the plankton: a cross-scale review. Limnol Oceanogr Fluids Environ 2:121–145

    Article  Google Scholar 

  • Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R (2011) Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91:471–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reis A, Gouveia L, Veloso V, Fernández HL, Empis JA, Novais JM (1996) Eicosapentaenoic acid-rich biomass production by the microalga Phaeodactylum tricornutum in a continuous-flow reactor. Bioresour Technol 55:83–88

    Article  CAS  Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, New York

    Book  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strains histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rubio FC, Camacho FG, Fernández Sevilla JM, Chisti Y, Grima EM (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  PubMed  CAS  Google Scholar 

  • Sengupta A, Carrara F, Stocker R (2017) Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543:555–558

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Verma E, Tiwari B, Niveshika, Mishra AK (2017) Modulation of fatty acids and hydrocarbons in Anabaena 7120 and its ntcA mutant under calcium. J Basic Microbiol 57:171–183

    Article  PubMed  CAS  Google Scholar 

  • Sobczuk T, Camacho F, Grima E, Chisti Y (2006) Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng 28:243–250

    Article  PubMed  CAS  Google Scholar 

  • Steinhoff FS, Karlberg M, Graeve M, Wulff A (2014) Cyanobacteria in Scandinavian coastal waters—a potential source for biofuels and fatty acids? Algal Res 5:42–51

    Article  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sust Energ Rev 16(6):4316–4342

    Article  CAS  Google Scholar 

  • Sullivan JM, Swift E, Donaghay PL, Rines JE (2003) Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. Harmful Algae 2:183–199

    Article  Google Scholar 

  • Tang JW, Wu QY, Hao HW, Chen Y, Wu M (2004) Effect of 1.7 MHz ultrasound on a gas-vacuolate cyanobacterium and a gas-vacuole negative cyanobacterium. Colloids Surf B 36:115–121

    Article  CAS  Google Scholar 

  • Tang HY, Chen M, Ng KYS, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109:2468–2474

    Article  PubMed  CAS  Google Scholar 

  • Tedesco MA, Duerr EO (1989) Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. J Appl Phycol 1:201–209

    Article  Google Scholar 

  • Thomas WH, Vernet M, Gibson CH (1995) Effects of small-scale turbulence on photosynthesis, pigmentation, cell division, and cell size in the marine dinoflagellate Gomaulax polyedra (Dinophyceae). J Phycol 31:50–59

    Article  Google Scholar 

  • Walsby AE (1997) Numerical integration of phytoplankton photosynthesis through time and depth in a water column. New Phytol 136:189–209

    Article  CAS  Google Scholar 

  • Wang PL, Shen H, Xie P (2012) Can hydrodynamics change phosphorus strategies of diatoms?—nutrient levels and diatom blooms in lotic and lentic ecosystems. Microb Ecol 63:369–382

    Article  PubMed  Google Scholar 

  • Wilbur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 1715:147–154

    Google Scholar 

  • Wilhelm C, Jakob T (2011) From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl Microbiol Biotechnol 92:909–919

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Li Z, Li C, Zhang Z, Guo JS (2016) Effect of small-scale turbulence on the physiology and morphology of two bloom-forming cyanobacteria. PLoS One 11(12):e0168925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Z, Song MM, Pei HY, Jiang LQ, Hou QJ, Nie CL, Zhang LJ (2017) The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour Technol 239:87–96

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation (No. 51779240, 51679226, 51509233), the Chongqing Natural Science Program (cstc2015jcyjBX0006), and Open Foundation by Key Laboratory of Sediments in Yellow River, Ministry of Water Resources. Dr. Yan Xiao is supported by the “Youth Innovation Promotion Association” Program funded by the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Zhang, S., Li, Z. et al. Turbulent mixing mediates the photosynthetic activities and biochemical composition of Anabaena: implications for bioengineering. J Appl Phycol 30, 2227–2236 (2018). https://doi.org/10.1007/s10811-018-1465-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1465-7

Keywords

Navigation