Skip to main content

The inclusion of Palmaria palmata macroalgae in Atlantic salmon (Salmo salar) diets: effects on growth, haematology, immunity and liver function

Abstract

A feeding study was carried out for fourteen weeks to evaluate the effects of partial inclusion of 5, 10 and 15 % of dillisk, Palmaria palmata, into formulated Atlantic salmon (Salmo salar) diets. A further fourth diet was produced without the presence of algae and was used as a basal reference diet. All the four diets were formulated to be iso-nitrogenous (40 %), iso-lipidic (25 %) and iso-energetic (26 MJ kg−1). Salmon growth (final body weight, weight gain, feed conversion ratio (FCR), specific growth rate (SGR)) were comparable across algal and control diets, with no significant differences amongst the treatments (P > 0.05). Comparisons of liver weight, viscera weight and viscerosomatic index (VSI) also suggested that the macroalgal inclusion did not affect fish growth (P > 0.05). Fish health indicators across haematological, immunological and hepatic function were generally similar between the experimental diets. The exceptions to this pattern included a significant decrease in alanine transaminase activity (P < 0.05) in the diet with 5 and 15 % P. palmata inclusion compared to other experimental diets. This may indicate that higher P. palmata inclusion improved hepatic function. Seaweed inclusion at 5 % also had positive effects on body lipid content when compared to the control diets. In conclusion, the findings demonstrated that P. palmata can be a suitable feed supplement in Atlantic salmon (S. salar) diets.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. AOAC (1995) Official methods of analysis of the Association of Official Analytical Chemists, 5th edn. Association of Official Analytical Chemists, Inc., USA

    Google Scholar 

  2. Araújo M, Rema P, Sousa-Pinto I, Cubha LM, Peixoto MJ, Pires MA, Seixas F, Brotas V, Beltran C, Valente LMP (2016) Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla in rainbow trout (Oncorhynchus mykiss) diets: effects on growth, intestinal morphology, tissue pigmentation, and immunological response. J Appl Phycol 28:679–689

    Article  Google Scholar 

  3. Asino H, Ai Q, Mai K (2011) Evaluation of Enteromorpha prolifera as a feed component in large yellow croaker (Pseudosciaena crocea, Richardson, 1846) diets. Aquacult Res 42:525–533

    CAS  Article  Google Scholar 

  4. Bain BJ, Lewis SM, Bates I (2006) Basic haematological techniques. In: Dacie and Lewis practical haematology, 10th edn. Churchill Livingstone, New York, pp 26–59

    Google Scholar 

  5. Bakke-McKellep AM, Press C, Baeverfjord G, Krogdahl A, Landsverk T (2000) Changes in immune and enzyme histochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon, Salmo salar L., with soybean meal induced enteritis. J Fish Dis 23:115–127

    Article  Google Scholar 

  6. Bansemir A, Blume M, Schröder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252:79–84

    Article  Google Scholar 

  7. Boettcher AA, Target NM (1993) Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology 74:891–903

    CAS  Article  Google Scholar 

  8. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Article  PubMed  Google Scholar 

  9. Costas B, Conceição LEC, Aragão C, Martos JA, Ruiz-Jarabo I, Mancera JM, Afonso A (2011) Physiological responses of Senegalese sole (Solea senegalensis Kaup, 1858) after stress challenge: effects on non-specific immune parameters, plasma free amino acids and energy metabolism. Aquaculture 316:68–76

    CAS  Article  Google Scholar 

  10. Davies SJ, Brown MT, Camilleri M (1997) Preliminary assessment of the seaweed Porphyra purpurea in artificial diets for thick-lipped grey mullet (Chelon labrosus). Aquaculture 152:249–258

    Article  Google Scholar 

  11. Diler I, Tekinay AA, Gliroy D, Gliroy BK, Soyutllrk M (2007) Effects of Ulva rigida on the growth, feed intake and body composition of common carp, Cyprinus carpio L. J Biol Sci 7:305–308

    CAS  Article  Google Scholar 

  12. Ergün S, Soyutürk M, Güroy B, Güroy D, Merrifield D (2008) Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquacult Int 17:355–361

    Article  Google Scholar 

  13. FAO (2009) How to feed the world by 2050. URL: http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf Accessed 23 June 2013

  14. FAO (2014) The State of World Fisheries and Aquaculture 2014. www.fao.org/3/a-i3720e.pdf Accessed 23 Dec 2015

  15. Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Tech 10:25–28

    CAS  Article  Google Scholar 

  16. Francis G, Makkar HP, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227

    CAS  Article  Google Scholar 

  17. Galland-Irmouli AV, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, Bronowicki JP, Villaume C, Guéant JL (1999) Nutritional value of proteins from edible seaweed Palmaria palmata (dulse). J Nutr Biochem 10:353–9

    CAS  Article  PubMed  Google Scholar 

  18. Gao J, Koshio S, Ishikawa M, Yokoyama S, Mamauag REP, Han Y (2012) Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major. Aquaculture 356–357:73–79

    Article  Google Scholar 

  19. Gatlin DM III, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl A, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579

    CAS  Article  Google Scholar 

  20. Gérard-Monnier D, Erdelmeier I, Régnard K, Moze-Henry N, Yadan J-C, Chaudiére J (1998) Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation. Chem Res Toxcol 11:1176–1183

    Article  Google Scholar 

  21. Guedes EAC, Araújo MA, Souza AK, de Souza LI, de Barros LD, Maranhão FC, Sant'Ana AE (2012) Antifungal activities of different extracts of marine macroalgae against dermatophytes and Candida species. Mycopathologia 174:223–232

    Article  PubMed  Google Scholar 

  22. Güroy B, Ergün S, Merrifield DL, Güroy D (2012) Effect of autoclaved Ulva meal on growth performance, nutrient utilization and fatty acid profile of rainbow trout, Oncorhynchus mykiss. Aquac Int 21:605–615

    Article  Google Scholar 

  23. Halver JE, Hardy RW (2002) Fish nutrition. Academic Press, Elsevier Science, USA

    Google Scholar 

  24. Hardy R (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult Res 41:770–776

    CAS  Article  Google Scholar 

  25. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    CAS  Article  Google Scholar 

  26. Hutson KS, Mata L, Paul NA, De Nys R (2012) Seaweed extracts as a natural control against the monogenean ectoparasite, Neobenedenia sp., infecting farmed barramundi (Lates calcarifer). Int J Parasitol 42:1135–1141

    Article  PubMed  Google Scholar 

  27. Jahanbin K, Hedayati A, Moini S, Gohari AR, Emam-Djomeh Z, Esposito A, Bagheri T (2012) The first application of a new polysaccharide from Acanthophyllum bracteatum for the health improvement of Atlantic salmon exposed to mercury chloride. Toxicol Ind Health 28:377–84

    CAS  Article  PubMed  Google Scholar 

  28. Kader MA, Koshio S, Ishikawa M, Yokoyama S, Bulbul M (2010) Supplemental effects of some crude ingredients in improving nutritive values of low fishmeal diets for red sea bream, Pagrus major. Aquaculture 308:136–144

    Article  Google Scholar 

  29. Krogdahl A, Bakke-McKellep AM, Baeverfjord G (2003) Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aquacult Nutr 9:361–371

    Article  Google Scholar 

  30. Li Z-H, Velisek J, Zlabek V, Grabic R, Machova J, Kolarova J, Li P, Randak T (2011) Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchus mykiss): effects on morphological indices, hematological parameters and antioxidant responses. J Hazard Mater 185:870–880

    CAS  Article  PubMed  Google Scholar 

  31. Macartain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    Article  PubMed  Google Scholar 

  32. Marrion O, Schwertz A, Fleurence J, Guéant JL, Villaume G (2003) Improvement of the digestibility of the proteins of the red alga Palmaria palmata by physical processes and fermentation. Food Nahrung 47:339–344

    CAS  Article  PubMed  Google Scholar 

  33. Marrion O, Fleurence J, Schwertz A, Guéant J-L, Mamelouk L, Ksouri J, Villaume C (2005) Evaluation of protein in vitro digestibility of Palmaria palmata and Gracilaria verrucosa. J Appl Phycol 17:99–102

    CAS  Article  Google Scholar 

  34. Mehrabi Z, Firouzbakhsh F, Jafarpour A (2012) Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. J Anim Physiol Anim Nutr (Berl) 96:474–481

    CAS  Article  Google Scholar 

  35. Morgan K, Wright J, Simpson F (1980) Review of chemical constituents of the red alga Palmaria palmata (dulse). Econ Bot 34:27–50

    CAS  Article  Google Scholar 

  36. Mouritsen OG, Dawczynski C, Duelund L, Jahreis G, Vetter W, Schröder M (2013) On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). J Appl Phycol 25:1777–1791

    CAS  Article  Google Scholar 

  37. Mustafa MG, Wakamatsu S, Takeda T et al (1995) Effect of algae as a feed additive on growth performance in red sea bream, Pagrus major. Proc 12th Symp Trace Nutr Res 12:67–72

    Google Scholar 

  38. Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–1045

    Article  Google Scholar 

  39. Nakano T, Tosa M, Takeuchi M (1995) Improvement of biochemical features in fish health by red yeast and synthetic astaxanthin. J Agr Food Chem 43:1570–1573

    CAS  Article  Google Scholar 

  40. Naylor RL, Hardy RW, Bureau DP et al (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106:15103–10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Olsvik PA, Torstensen BE, Hemre G-I, Sanden M, Waagbø R (2011) Hepatic oxidative stress in Atlantic salmon (Salmo salar L.) transferred from a diet based on marine feed ingredients to a diet based on plant ingredients. Aquacult Nutr 17:e424–e436

    Article  Google Scholar 

  42. Ortiz-Ordoñez E, Uría-Galicia E, Ruiz-Picos RA, Duran AGS, Trejo YH, Sedeño-Díaz JE, López-López E (2011) Effect of Yerbimat herbicide on lipid peroxidation, catalase activity, and histological damage in gills and liver of the freshwater fish Goodea atripinnis. Arch Environ Contam Toxicol 61:443–52

    Article  PubMed  Google Scholar 

  43. Pereira H, Barreira L, Figueiredo F, Custódio L, Vizetto-Duarte C, Polo C, Rešek E, Engelen A, Varela J (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Perez-Lorenzo S, Levy-Benshimol A, Gomez-Acevedo S (1998) Presence of lectins, tannins and protease inhibitors in Venezuelan marine algae. Acta Cient Venez 49:144–151

    CAS  PubMed  Google Scholar 

  45. Petropoulos IK, Thompson KD, Morgan A, Dick JR, Tocher DR, Bell JG (2009) Effects of substitution of dietary fish oil with a blend of vegetable oils on liver and peripheral blood leucocyte fatty acid composition, plasma prostaglandin E2 and immune parameters in three strains of Atlantic salmon (Salmo salar). Aquacult Nutr 15:596–607

    CAS  Article  Google Scholar 

  46. Rao BS, Deshpande V (2005) Experimental biochemistry: a student companion. I K International Pvt Ltd, Tunbridge Wells, Kent, pp 218–222

    Google Scholar 

  47. Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energ 10:14–22

    Article  Google Scholar 

  48. Refstie S, Svihus B, Shearer KD, Storebakken T (1999) Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soybean products. Aquaculture 79:331–345

    CAS  Google Scholar 

  49. Rindi F, Soler-Vila A, Guiry MD (2012) Taxonomy of marine macroalgae used as sources of bioactive compounds. In: Hayes M (ed) Marine bioactive compounds: taxonomy of marine macroalgae used as sources of bioactive compounds. Springer, Berlin, pp 1–53

    Chapter  Google Scholar 

  50. Robb DHF, Kestin SC, Warriss PD, Nute GR (2002) Muscle lipid content determines the eating quality of smoked and cooked Atlantic salmon (Salmo salar). Aquaculture 205:345–358

    CAS  Article  Google Scholar 

  51. Ruperez P (2002) Mineral content of edible marine seaweeds. Food Chem 79:23–26

    CAS  Article  Google Scholar 

  52. Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: critical review. J Food Sci Techol 47:587–597

    CAS  Article  Google Scholar 

  53. Saksida SM, Marty GD, Jones SRM, Manchester H, Diamond CL, Bidulka J, St-Hilaire S (2012) Parasites and hepatic lesions among pink salmon, Oncorhynchus gorbuscha (Walbaum), during early seawater residence. J Fish Dis 35:137–51

    CAS  Article  PubMed  Google Scholar 

  54. Shiau S-Y, Liang S-H (1994) Nutrient digestibility and growth of hybrid tilapia, Oreochromis niloticus x O. aureus, as influenced by agar supplementation at two dietary protein levels. Aquaculture 127:41–48

    Article  Google Scholar 

  55. Silva DM, Valente LMP, Sousa-Pinto I, Pereira R, Pires MA, Seaxas F, Rema P (2015) Evaluation of IMTA-produced seaweeds (Gracilaria, Porphyra, and Ulva) as dietary ingredients in Nile tilapia, Oreochromis niloticus L., juveniles. Effects on growth performance and gut histology. J Appl Phycol 27:1671–1680

  56. Siwicki AK, Anderson DP (1993) Non-specific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. In: Siwicki AK, Anderson DP, Waluga J (eds) Fish disease diagnosis and preventions methods. Olsztyn, Poland, pp 105–112

    Google Scholar 

  57. Soler-Vila A, Coughlan S, Guiry MD, Kraan S (2009) The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. J Appl Phycol 21:617–624

    Article  Google Scholar 

  58. Spencer K, Price CP (1977) Influence of reagent quality and reaction conditions on the determination of serum albumin by the bromocresol green dye-binding method. Ann Clin Biochem 14:105–115

    CAS  Article  PubMed  Google Scholar 

  59. Stadtlander T, Khalil WKB, Focken U, Becker K (2013) Effects of low and medium levels of red alga Nori (Porphyra yezoensis Ueda) in the diets on growth, feed utilization and metabolism in intensively fed Nile tilapia, Oreochromis niloticus (L.). Aquac Nutr 19:64–73

    CAS  Article  Google Scholar 

  60. Storebakken T, Austreng E (1987) Binders in fish feeds: II. Effect of different alginates on the digestibility of macronutrients in rainbow trout. Aquaculture 60:121–131

    CAS  Article  Google Scholar 

  61. Sturmbauer C (1991) Different enzymes for laminarine digestion in Chondrostoma nasus (cyprinidae) and Oreochromis sp. (cichlidae). Comp Biochem Physiol A 100:199–202

    Article  Google Scholar 

  62. Trinder P (1969) Determination of glucose using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6:24–27

    CAS  Article  Google Scholar 

  63. Underwood AJ (1996) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge

    Book  Google Scholar 

  64. Valente LMP, Gouveia A, Rema P, Matos J, Gomes EF, Pinto IS (2006) Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 252:85–91

    Article  Google Scholar 

  65. Vizcaíno AJ, Mendes SI, Varela JL, Ruiz-Jarabo I, Rico R, Figueroa FL, Abdala R, Morinogo MA, Mancera JM, Alacon FJ (2015) Growth, tissue metabolites and digestive functionality in Sparus aurata juveniles fed different levels of macroalgae, Gracilaria cornea and Ulva rigida. Aquac Res. doi:10.1111/are.12774

    Google Scholar 

  66. Walker AB, Fournier HR, Neefus CD, Nardi GC, Berlinsky DL (2009) Partial replacement of fish meal with laver Porphyra spp. in diets for Atlantic cod. N Am J Aquacult 71:39–45

    Article  Google Scholar 

  67. Wassef EA, El-Sayed A-FM, Sakr EM (2013) Pterocladia (Rhodophyta) and Ulva (Chlorophyta) as feed supplements for European seabass, Dicentrarchus labrax L., fry. Appl Phycol 25:1369–1376

    CAS  Article  Google Scholar 

  68. Wiegertjes GF, Stet RJM, Parmentier HK, Van Muiswinkel WB (1996) Immunogenetics of disease resistance in fish: a comparative approach. Dev Comp Immunol 20:365–381

    CAS  Article  PubMed  Google Scholar 

  69. Yano T (1992) Assays for haemolytic complement activity. In: Stolen JS, Fletcher TC, Anderson DP, Kaattari SL, Rowley AF (eds) Techniques in fish immunology. FITC2 SOS Publications, Fairhaven, pp 131–141

    Google Scholar 

  70. Yuan YV, Carrington MF, Walsh N (2005) Extracts from dulse (Palmaria palmata) are effective antioxidants and inhibitors of cell proliferation in vitro. Food Chem Toxicol 43:1073–1081

    CAS  Article  PubMed  Google Scholar 

  71. Yuan YV, Westcott ND, Hu C, Kitts DD (2009) Mycosporine-like amino acid composition of the edible red alga, Palmaria palmata (dulse) harvested from the west and east coasts of Grand Manan Island, New Brunswick. Food Chem 112:321–328

    CAS  Article  Google Scholar 

  72. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice and Hall, New Jersey, p 187

    Google Scholar 

Download references

Acknowledgments

This project (Grant-Aid Agreement No. MFFRI/07/01) is carried out under the Sea Change Strategy with the support of the Marine Institute and the Department of Agriculture, Food and the Marine, funded under the National Development Plan 2007–2013. We would like to express our thanks to Dr Majbritt Bolton-Warberg for her editorial assistance. The authors would like to thank the members of the Irish Seaweed Research Group, in particular Dr Monica Moniz, Dr Jazmin Hernández-Kantún, Celine Raud and Jeremy Bidault for their assistance in seaweed collection, sample collection and proximate analysis. In addition, special thanks are also given to the Steve Amey, Ken Maher and Kieran O’ Halloran at Carna research station for their assistance during the feeding trial.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alex H. L. Wan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, A.H.L., Soler-Vila, A., O’Keeffe, D. et al. The inclusion of Palmaria palmata macroalgae in Atlantic salmon (Salmo salar) diets: effects on growth, haematology, immunity and liver function. J Appl Phycol 28, 3091–3100 (2016). https://doi.org/10.1007/s10811-016-0821-8

Download citation

Keywords

  • Atlantic salmon
  • Seaweed
  • Macroalgae
  • Dillisk
  • Palmaria palmata
  • Blood parameters