Journal of Applied Phycology

, Volume 28, Issue 5, pp 2793–2803 | Cite as

A multidrug efflux response to methyl viologen and acriflavine toxicity in the cyanobacterium Synechocystis sp. PCC6803

  • Sarah E. Ongley
  • Jasper J. L. Pengelly
  • Brett A. Neilan


The genome of the model cyanobacterium Synechocystis sp. PCC6803 contains 28 genes encoding multidrug efflux transporters, including only two transporters from the multidrug and toxic compound extrusion (MATE) family (Slr0896 and Slr1543, NorM- and DinF-like, respectively) and one transporter of the bile acid-sodium symporter (BASS) type (Sll1428). In this study, single and double mutant Synechocystis sp. PCC6803 strains of slr0896, slr1543, and sll1428 were created. The mutant strains exhibited increased sensitivity to the toxic organic cations acriflavine and methyl viologen, but not fluoroquinolones, tetracycline, berberine, or sodium deoxycholate. To assess the involvement of multidrug transporters in the mitigation of acriflavine- and methyl viologen-induced toxicity, we performed transcript analysis of slr0896, slr1543, and sll1428, three ATP-binding cassette (ABC) (sll1180, slr1488, and slr1494), and three resistance-nodulation-cell division (RND) (slr0369, slr0454, and slr2131) transporter genes in wildtype and mutant Synechocystis sp. PCC6803 strains. Compared to the wildtype, under basal conditions the double mutants showed upregulation of the remaining broad-range Slr0896, Sll1428, or Slr1543 transporter/s; in addition, all mutants showed a very high upregulation of the ABC transporter Slr1488. Upregulation of slr0896, sll1428, and slr1543 in mutant strains exposed to acriflavine supported their role in its export. slr0896 is previously reported to be downregulated under methyl viologen exposure by the methyl viologen-responsive regulator gene slr0895, which is also evident in this study; in addition, we observed a downregulation of sll1428 and slr1543 in the presence of methyl viologen. The findings suggest that Slr1488 is an important transporter for maintenance of cellular homeostasis in response to exogenous toxic compounds, supported by the high levels of sll1488 expression present in strains deficient in multidrug resistance (MDR) transporters.


Cyanobacteria PCC 6803 Transport Efflux Acriflavine Methyl viologen 


Compliance with ethical standards


This work was supported by the Australian Research Council (ARC).

Supplementary material

10811_2016_816_MOESM1_ESM.pdf (75 kb)
ESM 1 (PDF 74 kb)


  1. Attar F, Khavari-Nejad S, Keyhani J, Keyhani E (2009) Structural and functional alterations of catalase induced by acriflavine, a compound causing apoptosis and necrosis. Ann NY Acad Sci 1171:292–299CrossRefPubMedGoogle Scholar
  2. Babykin MM, Sidoruk KV, Zinchenko VV, Nefedova LN, Cerff R, Shestakov SV (2003) On the involvement of the regulatory gene prqR in the development of resistance to methyl viologen in cyanobacterium Synechocystis sp. PCC 6803. Russ J Genet 39:18–24CrossRefGoogle Scholar
  3. Begum A, Rahman MM, Ogawa W, Mizushima T, Kuroda T, Tsuchiya T (2005) Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 49:949–957CrossRefPubMedGoogle Scholar
  4. Burse A, Weingart H, Ullrich MS (2004) NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Apple Environ Microbiol 70:693–703CrossRefGoogle Scholar
  5. Butaye P, Cloeckaert A, Schwarz S (2003) Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents 22:205–210CrossRefPubMedGoogle Scholar
  6. Chen J, Morita Y, Huda MN, Kuroda T, Mizushima T, Tsuchiya T (2002) VmrA, a member of a novel class of Na+−coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 184:572–576Google Scholar
  7. Cheng J, Guffanti AA, Wang W, Krulwich TA, Bechhofer DH (1996) Chromosomal tetA(L) gene of Bacillus subtilis: regulation of expression and physiology of a tetA(L) deletion strain. J Bacteriol 178:2853–2860PubMedPubMedCentralGoogle Scholar
  8. Davis DR, McAlpine JB, Pazoles CJ, Talbot MK, Alder EA, White C, Jonas BM, Murray BE, Weinstock GM, Rogers BL (2001) Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery. J Mol Microbiol Biotechnol 3:179–184PubMedGoogle Scholar
  9. Diener AC, Gaxiola RA, Fink GR (2001) Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell 13:1625–1638CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dridi L, Tankovic J, Petit J-C (2004) CdeA of Clostridium difficile, a new multidrug efflux transporter of the MATE family. Microb Drug Resist 10:191–196CrossRefPubMedGoogle Scholar
  11. Eaton-Rye J (2004) The construction of gene knockouts in the cyanobacterium Synechocystis sp. PCC 6803. Method Mol Biol 274:309–324Google Scholar
  12. Garcia MXU, Roberts C, Alexander H, Stewart AM, Harwood A, Alexander S, Insall RH (2002) Methanol and acriflavine resistance in Dictyostelium are caused by loss of catalase. Microbiology (Reading) 148:333–340CrossRefGoogle Scholar
  13. Hahn A, Stevanovic M, Mirus O, Lytvynenko I, Pos KM, Schleiff E (2013) The outer membrane TolC-like channel HgdD Is part of tripartite resistance-nodulation-cell division (RND) efflux systems conferring multiple-drug resistance in the cyanobacterium Anabaena sp. PCC7120. J Biol Chem 288:31192–31205CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hassan HM, Fridovich I (1979) Paraquat and Escherichia coli. Mechanism of production of extracellular superoxide radical. J Biol Chem 254:10846–10852PubMedGoogle Scholar
  15. Hernández-Prieto MA, Schön V, Georg J, Barreira L, Varela J, Hess WR, Futschik ME (2012) Iron deprivation in Synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. Genes Genom Genet 2:1475–1495Google Scholar
  16. Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock REW, Speert DP (2002) Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 196:109–118CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 38:1171–1176CrossRefPubMedGoogle Scholar
  18. Kao SM, Hassan HM (1985) Biochemical characterization of a paraquat-tolerant mutant of Escherichia coli. J Biol Chem 260:10478–10481PubMedGoogle Scholar
  19. Kopf M, Klähn S, Scholz I, Matthiessen JKF, Hess WR, Voß B (2014) Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 21:527–539CrossRefPubMedPubMedCentralGoogle Scholar
  20. Krulwich TA, Lewinson O, Padan E, Bibi E (2005) Do physiological roles foster persistence of drug/multidrug-efflux transporters? A case study. Nat Rev Microbiol 3:566–572CrossRefPubMedGoogle Scholar
  21. Latifi A, Jeanjean R, Lemeille S, Havaux M, Zhang CC (2005) Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598CrossRefPubMedPubMedCentralGoogle Scholar
  22. Latifi A, Ruiz M, Zhang C-C (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278CrossRefPubMedGoogle Scholar
  23. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lewinson O, Padan E, Bibi E (2004) Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci U S A 101:14073–14078CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lewinson O, Adler J, Sigal N, Bibi E (2006) Promiscuity in multidrug recognition and transport: the bacterial MFS Mdr transporters. Mol Microbiol 61:277–284CrossRefPubMedGoogle Scholar
  26. Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368CrossRefPubMedGoogle Scholar
  27. Liu J, Chen L, Wang J, Qiao J, Zhang W (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:68CrossRefPubMedPubMedCentralGoogle Scholar
  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  29. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55CrossRefPubMedGoogle Scholar
  30. McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 77:3974–3977CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mohamed S, Nagaraj G, Chua FHC, Wang YG (2000) The use of chemicals in aquaculture in Malaysia and Singapore. In: Arthur JR, Lavilla-Pitogo CR, Subasinghe RP (ed). Use of chemicals in aquaculture in Asia: Proceedings of the meeting on the use of chemicals in aquaculture in Asia 20–22 May 1996, Tigbauan, Iloilo, Philippines. Tigbauan, Iloilo, Philippines: Aquaculture Department, Southeast Asian Fisheries Development Center, pp 127–140.Google Scholar
  32. Moirangthem LD, Bhattacharya S, Stensjö K, Lindblad P, Bhattacharya J (2014) A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133. Appl Microbiol Biotechnol 98:3809–3818CrossRefPubMedGoogle Scholar
  33. Morimyo M (1988) Isolation and characterization of methyl viologen-sensitive mutants of Escherichia coli K-12. J Bacteriol 170:2136–2142PubMedPubMedCentralGoogle Scholar
  34. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782PubMedPubMedCentralGoogle Scholar
  35. Morita M, Shitan N, Sawada K, Van Montagu MCE, Inze D, Rischer H, Goossens A, Oksman-Caldentey KM, Moriyama Y, Yazaki K (2009) Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci U S A 106:2447–2452CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nefedova LN, Fantin YS, Zinchenko VV, Babykin MM (2003) The prqA and mvrA genes encoding drug efflux proteins control resistance to methyl viologen in the cyanobacterium Synechocystis sp. PCC 6803. Russ J Genet 39:264–268CrossRefGoogle Scholar
  37. Neyfakh AA (2002) Mystery of multidrug transporters: the answer can be simple. Mol Microbiol 44:1123–1130CrossRefPubMedGoogle Scholar
  38. Neyfakh AA, Bidnenko VE, Chen LB (1991) Efflux-mediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc Natl Acad Sci U S A 88:4781–4785CrossRefPubMedPubMedCentralGoogle Scholar
  39. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593CrossRefPubMedGoogle Scholar
  40. Ongley SE, Pengelly JJL, Neilan BA (2015) Elevated Na+ and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T3. Environ Microbiol. doi: 10.1111/1462-2920.13048
  41. Orgel A, Brenner S (1961) Mutagenesis of bacteriophage T4 by acridines. J Mol Biol 3:762–768CrossRefPubMedGoogle Scholar
  42. Paulsen IT, Chen J, Nelson KE, Saier MH (2001) Comparative genomics of microbial drug efflux systems. J Mol Microbiol Biotechnol 3:145–150PubMedGoogle Scholar
  43. Persinoti GF, de Aguiar Peres NT, Jacob TR, Rossi A, Vêncio RZ, Martinez-Rossi NM (2014) RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics 15(Suppl 7):S1PubMedPubMedCentralGoogle Scholar
  44. Pumbwe L, Randall LP, Woodward MJ, Piddock LJV (2004) Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple-antibiotic-resistant Campylobacter jejuni. J Antimicrob Chemoth 54:341–347CrossRefGoogle Scholar
  45. Raghavan PS, Rajaram H, Apte SK (2011) Nitrogen status dependent oxidative stress tolerance conferred by overexpression of MnSOD and FeSOD proteins in Anabaena sp. strain PCC7120. Plant Mol Biol 77:407–417CrossRefPubMedGoogle Scholar
  46. Ramos-León F, Mariscal V, Frías JE, Flores E, Herrero A (2015) Divisome-dependent subcellular localization of cell-cell joining protein SepJ in the filamentous cyanobacterium Anabaena. Mol Microbiol 96:566–580CrossRefPubMedGoogle Scholar
  47. Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35(Database issue):D274–D279CrossRefPubMedGoogle Scholar
  48. Reuter G, Janvilisri T, Venter H, Shahi S, Balakrishnan L, van Veen HW (2003) The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J Biol Chem 278:35193–35198CrossRefPubMedGoogle Scholar
  49. Rodríguez-Beltrán J, Rodríguez-Rojas A, Guelfo JR, Couce A, Blázquez J (2012) The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts. PLoS One 7:e34791CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rouquette-Loughlin C, Dunham SA, Kuhn M, Balthazar JT, Shafer WM (2003) The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 185:1101–1106CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sawada Y, Toyooka K, Kuwahara A, Sakata A, Nagano M, Saito K, Hirai MY (2009) Arabidopsis bile acid:sodium symporter family protein 5 is involved in methionine-derived glucosinolate biosynthesis. Plant Cell Physiol 50:1579–1586CrossRefPubMedPubMedCentralGoogle Scholar
  52. Silver S (1965) Acriflavine resistance: a bacteriophage mutation affecting the uptake of dye by the infected bacterial cells. Proc Natl Acad Sci U S A 53:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  53. Staiff DC, Comer SW, Armstrong JF, Wolfe HR (1975) Exposure to the herbicide, paraquat. Bull Environ Contam Toxicol 14:334–340CrossRefPubMedGoogle Scholar
  54. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39:75–85CrossRefPubMedGoogle Scholar
  55. Wong K, Ma J, Rothnie A, Biggin PC, Kerr ID (2014) Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem Sci 39:8–16CrossRefPubMedGoogle Scholar
  56. Woods DR, Schauder VR, Waddington PB (1973) Acriflavine uptake and resistance in Serratia marcescens cells and spheroplasts. J Bacteriol 114:59–64PubMedPubMedCentralGoogle Scholar
  57. Yang S, Lopez CR, Zechiedrich EL (2006) Quorum sensing and multidrug transporters in Escherichia coli. Proc Natl Acad Sci U S A 103:2386–2391CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang Y, Niu X, Shi M, Pei G, Zhang X, Chen L, Zhang W (2015) Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 6:487PubMedPubMedCentralGoogle Scholar
  59. Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6:106CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sarah E. Ongley
    • 1
  • Jasper J. L. Pengelly
    • 1
  • Brett A. Neilan
    • 1
  1. 1.School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyAustralia

Personalised recommendations