Journal of Applied Phycology

, Volume 28, Issue 4, pp 2279–2286 | Cite as

Water polluted with glyphosate formulations: effectiveness of a decontamination process using Chlorella vulgaris growing as bioindicator

  • Ulises Reno
  • Luciana Regaldo
  • Eduardo Vidal
  • Melisa Mariani
  • Cristina Zalazar
  • Ana María Gagneten


The environmental pollution caused by pesticides is considered a major problem worldwide. Glyphosate is one of the herbicides most widely used, and its use has increased sharply in the last years. In this work, the toxicity of four commercial glyphosate formulations (Eskoba®, Panzer Gold®, Roundup Ultramax® and Sulfosato Touchdown®) was assessed by determining the median effective concentration at 96 h (96 h-EC50) using the microalga Chlorella vulgaris as the biological model. Although the formulations tested are moderately to slightly toxic to C. vulgaris according to the World Health Organization’s toxicity categories for aquatic and terrestrial organisms, this research shows that the four formulations are toxic, with Eskoba® the least toxic and Roundup Ultramax® the most toxic one. A UV/H2O2 remediation process for the detoxification of the samples was tested also. Its effectiveness was evaluated using a C. vulgaris growth inhibition test. Growth inhibition of C. vulgaris did not reach 18.2 %, indicating the efficacy of the UV/H2O2 remediation process to reduce glyphosate toxicity. In some of the samples tested within the first 48 h of the assay, C. vulgaris growth was even increased. The results of the present work suggest that the selected species was a good indicator to determine the toxicity level of glyphosate formulations and shows the relevance of the ecotoxicological tests to evaluate a physicochemical remediation process.


Glyphosate formulations UV/H2O2 process Ecotoxicity Chlorella vulgaris Bioindicator 



This research was supported by grants from the University Universidad Nacional del Litoral, Projects CAI + D Orientado No.: 1.6 and CAI + D N°: 501 201101 00215 LI. We would like to thank to Margarita Herman for the English language editing.


  1. Al-Shatri AH, Ali E, Al-Shorgani NKN, Kalil MS (2014) Growth of Senedesmus dimorphus in different algal media and pH profile due to secreted metabolites. Afr J Biotechnol 13:1714–1720CrossRefGoogle Scholar
  2. Ashoka Deepananda KHM, Gajamange D, De Silva WAJP, Wegiriya HCE (2011) Acute toxicity of a glyphosate herbicide, Roundup®, to two freshwater crustaceans. J Nat Sci Foundation Sri Lanka 39:169–173Google Scholar
  3. Bavcon Kralj M, Franco M, Trebse P (2007) Photodegradation of organophosphorus insecticides – Investigations of products and their toxicity using gas chromatography– mass spectrometry and AChE-thermal lens spectrometric bioassay. Chemosphere 67:99–107CrossRefPubMedGoogle Scholar
  4. Binimelis R, Pengue W, Monterroso I (2009) Transgenic treadmill: responses to the emergence and spread of glyphosate- resistant johnsongrass in Argentina. Geoforum 40:623–633CrossRefGoogle Scholar
  5. Bischoff HW, Bold HC (1963) Phycological studies. IV. Some soil algae from enchanted rock and related algal species. Inst Mar Sci Univ Texas Publ 6318:1–95Google Scholar
  6. CASAFE (Argentine board of agricultural health and fertilisers), (2011) Guía de Productos Fitosanitarios para la República Argentina. Buenos Aires, ArgentinaGoogle Scholar
  7. Chen Y, Wu F, Lin Y, Deng N, Bazhin N, Glebov E (2007) Photodegradation of glyphosate in the ferrioxalate system. J Hazard Mater 148:360–365CrossRefPubMedGoogle Scholar
  8. Cox C (2004) Herbicide factsheet—glyphosate. J Pesticide Reform 24:10–15Google Scholar
  9. De la Cruz N, Dantas RF, Giménez J, Esplugas S (2013) Photolysis and TiO2photocatalysis of the pharmaceutical propranolol: solar and artificial light. Applied Catalysis B. 130– 131; 249– 256.Google Scholar
  10. Demetrio P, Bulus Rossini G, Bonetto C, Ronco A (2012) Effects of pesticide formulations and active ingredients on the coelenterate Hydra attenuata (Pallas, 1766). Bull Environ Contam Toxicol 88:15–19CrossRefPubMedGoogle Scholar
  11. Domínguez-Cortinas G, Mejía-Saavedra J, Santos-Medrano GE, Rico-Martínez R (2008) Analysis of the toxicity of glyphosate and faena® using the freshwater invertebrates Daphnia magna and Lecane quadridentata. Toxicol Environ Chem 90:377–384CrossRefGoogle Scholar
  12. Drzewicz P, Nalecz-Jaweck G, Gryz M, Sawick IJ, Bojanowska-Czajka A, Głuszewski W, Kulisa K, Wołkowicz S, Trojanowicz M (2004) Monitoring of toxicity during degradation of selected pesticides using ionizing radiation. Chemosphere 57:135–145CrossRefPubMedGoogle Scholar
  13. Durrieu C, Badreddine I, Daix C (2003) A dialysis system with phytoplankton for monitoring chemical pollution in freshwater ecosystems by alkaline phosphatase assay. J Appl Phycol 15:289–295CrossRefGoogle Scholar
  14. Echavia GRM, Matzusawa F, Negishi N (2009) Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere 76:595–600CrossRefPubMedGoogle Scholar
  15. Essam T, Amin MA, El Tayeb O, Mattiasson B, Benoit G (2007) Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res 41:1697–1704CrossRefPubMedGoogle Scholar
  16. FAOSTAT (2013) (accessed 18 March 2015).
  17. International Organization for Standardization (IOS). IOS 8692 (1989). Water quality: fresh water algal growth inhibition test with Scenedesmus subspicatus and Selenastrum capricornutum. Google Scholar
  18. Junges CM, Vidal EE, Attademo AM, Mariani M, Cardell L, Negro AC, Cassano A, Peltzer P, Lajmanovich R, Zalazar CS (2013) Effectiveness evaluation of glyphosate oxidation employing the H2O2/UV process: toxicity assays with Vibrio fischeri and Rhinella arenarum tadpoles. J Environ Sci Health B 48:163–170CrossRefPubMedGoogle Scholar
  19. Klamerth N, Rizzo L, Malato S, Maldonado MI, Agüera A, Fernández-Alba AR (2010) Degradation of fifteen emerging contaminants at mg L−1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res 44:545–554CrossRefPubMedGoogle Scholar
  20. Lajmanovich R, Attademo A, Peltzer P, Junges C, Cabagna M (2011) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura:Bufonidae) tadpoles: B-esterases and glutathione–S-transferase inhibitors. Arch Environ ContamToxicol 60:681–689CrossRefGoogle Scholar
  21. Lanctôt C, Navarro-Martína L, Robertsona C, Park B, Jackmanc P, Paulid BD, Trudeau VL (2014) Effects of glyphosate-based herbicides on survival, development, growth and sex ratios of wood frog (Lithobates sylvaticus) tadpoles. II: agriculturally relevant exposures to Roundup WeatherMax® andVision® under laboratory conditions. Aquat Toxicol 154:291–303CrossRefPubMedGoogle Scholar
  22. Luna LM, Carmenate Z (2004) Microalgas como biomonitores de contaminación. Revista Cubana de Química 16:34–48Google Scholar
  23. Manassero A, Passalía C, Negro AC, Cassano AE, Zalazar CS (2010) Glyphosate degradation in water employing the H2O2/UVC process. Water Res 44:3875–3882CrossRefPubMedGoogle Scholar
  24. Maršálek B, Rojíčková R (1996) Stress factors enhancing production of algal exudates: a potential self-protective mechanism? Z Naturforsch 51c:646–650Google Scholar
  25. Mensah PK, Palmer CG, Muller WJ (2013) Derivation of South African water quality guidelines for roundup using species sensitivity distribution. Ecotoxicol Environ Saf 96:24–31CrossRefPubMedGoogle Scholar
  26. National Council of Science and Technology (CONICET) (2009) Report: evaluation of information scientific linked to glyphosate in incidence on human health and the environment. Buenos Aires, Argentina, p 133Google Scholar
  27. Organisation for Economic Co-operation and Development (OECD) (2011) Guidelines for the testing of chemicals 201. Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Paris. FranceGoogle Scholar
  28. Piola L, Fuchs J, Oneto ML, Basack S, Kesten E, Casabé N (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91:545–551CrossRefPubMedGoogle Scholar
  29. Puglis HJ, Boone MD (2011) Effects of technical-grade active ingredient vs. Commercial formulation of seven pesticides in the presence or absence of UV radiation on survival of green frog tadpoles. Arch Environ ContamToxicol 60:145–155CrossRefGoogle Scholar
  30. Qiu H, Geng J, Ren H, Xia X, Wang X, Yu Y (2013) Physiological and biochemical responses of Microcystis aeruginosa to glyphosate and its Roundup® formulation. J Hazard Mater 248–249:172–176CrossRefPubMedGoogle Scholar
  31. Regaldo L (2013) Efecto de metales pesados y plaguicidas sobre organismos planctónicos de diferente nivel trófico y eficacia de acumulación por microalgas. Facultad de Bioquimica y Ciencias Biologicas. Doctoral thesis, Universidad Nacional del Litoral. Santa Fe, Argentina, pp 118Google Scholar
  32. Reno U, Gutiérrez F, Regaldo L, Gagneten AM (2014) The impact of Eskobat, a glyphosate formulation, on the freshwater plankton community. Water Environ Res 86:2294–2300CrossRefPubMedGoogle Scholar
  33. Reno U, Gutierrez MF, Longo M, Vidal E, Regaldo L, Negro A, Mariani M, Zalazar C, Gagneten AM (2015) Microcrustaceans: biological models to evaluate a remediation process of glyphosate-based formulations. Water Air Soil Pollut 226:349CrossRefGoogle Scholar
  34. Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45:4311–4340CrossRefPubMedGoogle Scholar
  35. Romero DM, Ríos de Molina MC, Juárez AB (2011) Oxidative stress induced by a commercial glyphosate formulation in a tolerant strain of Chlorella kessleri. Ecotoxicol Environ Saf 74:741–747CrossRefPubMedGoogle Scholar
  36. Sáenz ME, Di Marzio WD (2009) Ecotoxicidad del herbicida glifosato sobre cuatro algas clorófitas dulceacuícolas. Limnetica 28:149–158Google Scholar
  37. Sáenz ME, Di Marzio WD, Alberdi JL (2012) Assessment of cyfluthrin commercial formulation on growth, photosynthesis and catalase activity of green algae. Pest Biochem Physiol 114:50–57CrossRefGoogle Scholar
  38. Schaaf AA (2013) Uso de pesticidas y toxicidad: relevamiento en la zona agrícola de San Vicente, Santa Fe, Argentina. Rev Mexicana Cienc Agrícol 4:323–331Google Scholar
  39. Sihtmae M, Blinova I, Kunnis-Beres K, Kanarbik L, Heinlaan M, Kahru A (2013) Ecotoxicological effects of different glyphosate formulations. Appl Soil Ecol 72:215–224CrossRefGoogle Scholar
  40. Székács I, Fejes A, Klátyik S, Takács E, Patkó D, Pomóthy J, Mörtl M, Horváth R, Madarász E, Darvas B, Székács A (2014) Environmental and toxicological impacts of glyphosate with its formulating adjuvant. Int J Agric Biosyst Sci Eng 8:212–218Google Scholar
  41. Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197CrossRefPubMedGoogle Scholar
  42. Tsui MTK, Chu LM (2004) Comparative toxicity of glyphosate-based herbicides: aqueous and sediment porewater exposures. Arch Environ ContamToxicol 46:316–323Google Scholar
  43. University National the Litoral (UNL) (2010) Report about the degree of toxicity of glyphosate. Santa Fe, Capital, ArgentinaGoogle Scholar
  44. US EPA, 2002. EPA-821-R-02-013. Short term methods for estimating the chronic toxicity of effluents and receiving waters to fresh water organism,4th edn. Washington, DCGoogle Scholar
  45. Vendrell E, Ferraz D, Gómez de Barreda D, Sabater C, Carrasco JM (2009) Effect of glyphosate on growth of four freshwater species of phytoplankton: a microplate bioassay. Bull Environ Contam Toxicol 82:538–542CrossRefPubMedGoogle Scholar
  46. Venrick EL (1978) How many cells to count? In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 167–180Google Scholar
  47. Vera MS, Lagomarsino L, Sylvester M, Pérez GL, Rodriguez P, Mugni H, Sinistro R, Ferraro M, Bonetto C, Zagarese H, Pizarro H (2010) New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicol 4:710–721CrossRefGoogle Scholar
  48. Vidal E, Negro A, Cassano A, Zalazar C (2015) Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process. Photochem Photobiol Sci 14:366–377CrossRefPubMedGoogle Scholar
  49. Wong P (2000) Effect of 2, 4-D, glyphosate and paraquat on growth, photosynthesis and cholorophyll-a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41:177–182CrossRefPubMedGoogle Scholar
  50. World Health Organization (WHO) (1994) Environmental health criteria 159 (glyphosate). World Health Organization, Geneva, p 117Google Scholar
  51. World Health Organization (WHO) (2015) Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate (accessed 20 March 2014). doi: 10.1016/S1470-2045(15)70134-8
  52. Zalizniak L (2006) The effects of selected agricultural chemicals on freshwater microalgae and cladocerans in laboratory studies, with particular emphasis on hormesis. PhD Thesis, RMIT UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ulises Reno
    • 1
  • Luciana Regaldo
    • 1
  • Eduardo Vidal
    • 2
    • 3
  • Melisa Mariani
    • 2
  • Cristina Zalazar
    • 2
    • 4
  • Ana María Gagneten
    • 1
  1. 1.Laboratorio de Ecotoxicología. Facultad de Humanidades y CienciasUniversidad Nacional del Litoral (FHUC-UNL). Ciudad UniversitariaSanta FeArgentina
  2. 2.INTEC (UNL-CONICET)Santa FeArgentina
  3. 3.Departamento de Ciencias NaturalesFHUC-UNLSanta FeArgentina
  4. 4.Departamento de Medio AmbienteFICH-UNLSanta FeArgentina

Personalised recommendations