Skip to main content
Log in

Cryopreservation of microalgae from desert environments of Qatar

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The Qatar University Culture Collection of Cyanobacteria and Microalgae (QUCCCM) is a unique resource containing a diverse collection of microalgae and cyanobacteria, isolated from the Qatar desert environment. In order to ensure maximum preservation of this resource, a number of cryopreservation techniques were applied to various strains, and the preservation effectiveness (cell viability and lipid productivity) was determined. The conditions tested were direct, passive, and freeze-cooling cryopreservation (technique), dimethyl sulfate and methanol (cryoprotectant), and 5 and 10 % cryoprotectant concentrations over storage durations of up to 1 year. It was shown that the cryopreservation regime is strain dependent, and strains belonging to the same genera can have different requirements. On the other hand, neutral lipid estimation, via Nile red fluorescence determination of pre- and post-cryopreserved microalgae isolates, confirmed that the lipid production is affected by the applied cryopreservation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abreu L, Borges L, Marangoni J, Abreu PC (2012) Cryopreservation of some useful microalgae species for biotechnological exploitation. J Appl Phycol 24:1579–1588

    Article  CAS  Google Scholar 

  • Benson EE, Bremner D (2004) Oxidative stress in the frozen plant: a free radical point of view. In: Fuller BJ, Lane N, Benson EE (eds) Life in the frozen state. CRC, Boca Raton, pp 206–241

    Google Scholar 

  • Bodas K, Brennig C, Diller KR, Brand JJ (1995) Cryopreservation of blue-green and eukaryotic algae in the culture collection at the University of Texas at Austin. CryoLetters 16:267–274

    Google Scholar 

  • Boroda AV, Aizdaicher NA, Odintsova NA (2014) The influence of ultra-low temperatures on marine microalgal cells. J Appl Phycol 26:387–397

    Article  CAS  Google Scholar 

  • Buhmann MT, Day JG, Kroth PG (2013) Post-cryopreservation viability of the benthic freshwater diatom Planothidium frequentissimum depends on light levels. Cryobiology 67:23–29

    Article  CAS  PubMed  Google Scholar 

  • Calcott PH (1978) Freezing and thawing microbes. Meadowfield, Durham, UK, 68 pp

    Google Scholar 

  • Canavate JP, Lubiant L (1997) Effects of slow and rapid warming on the cryopreservation of marine micro algae. Cryobiology 35:143–149

    Article  Google Scholar 

  • Chen W, Zhang C, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbial Methods 77:41–47

    Article  CAS  Google Scholar 

  • Day JG (1998) Cryoconservation of microalgae and cyanobacteria. CryoLetters 1:7–14

    Google Scholar 

  • Day JG, DeVille M (1995) Cryopreservation of algae. In: Day JG, McLellan MR (eds) Cryopreservation and freeze-drying protocols. Methods in molecular biology, 38. Humana, Totowa, USA, pp 81–89

    Chapter  Google Scholar 

  • Day JG, Fenwick C (1993) Cryopreservation of members of the genus Tetraselmis used in aquaculture. Aquaculture 118:151–160

    Article  Google Scholar 

  • Day JG, McClellan MR (1995) Cryopreservation and freeze-drying protocols. Methods in Molecular Biology vol 38. Humana Press, Totowa, New Jersey, 245 pp

  • Day JG, Stacey G (2007). Cryopreservation and freeze-drying protocols (Vol. 368). Springer Science and Business Media

  • Day JG, Fleck RA, Benson EE (2000) Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryoinjury. J Appl Phycol 12:369–733

    Article  Google Scholar 

  • Guermazi W, Sellami-Kammoun A, Elloumi J, Drira Z, Aleya L, Marangoni R, Ayadi H, Maalej S (2010) Microalgal cryo-preservation using dimethyl sulfoxide (Me2SO) coupled with two freezing protocols: influence on the fatty acid profile. J Therm Biol 35:175–181

    Article  CAS  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Heckly RJ (1978) Preservation of microorganisms. Adv Appl Microbiol 24:1–53

    Article  CAS  PubMed  Google Scholar 

  • Kuwano K, Saga N (2000) Cryopreservation of marine algae: applications in biotechnology. In: Fingerman M, Nagabhusha-nam R (eds) Recent Advances in Marine Biotechnology, Vol. 4, Aquaculture, Part A, Sea-weeds and invertebrates. Science Publishers, USA, pp 23–40

    Google Scholar 

  • Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLellan MR (1989) Cryopreservation of diatoms. Diatom Res 4:301–318

    Article  Google Scholar 

  • Müller J, Day JG, Harding K, Hepperle D, Lorenz M, Friedl T (2007) Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism (AFLP). Am J Bot 94:799–808

    Article  PubMed  Google Scholar 

  • Nei T (1967) Mechanism of hemolysis of erythrocytes by freezing at near-zero temperatures: I. Microscopic observation of hemolyzing erythrocytes during the freezing and thawing process. Cryobiology 4:153–156

    Article  CAS  PubMed  Google Scholar 

  • Piasecki BP, Diller KR, Brand JJ (2009) Cryopreservation of Chlamydomonas reinhardtii: a cause of low viability at high cell density. Cryobiology 58:103–109

    Article  CAS  PubMed  Google Scholar 

  • Rastoll MJ, Ouahid Y, Martín-Gordillo F, Ramos V, Vasconcelos V, Del Campo FF (2013) The development of a cryopreservation method suitable for a large cyanobacteria collection. J Appl Phycol 25:1483–1493

    Article  CAS  Google Scholar 

  • Rhodes L, Smith J, Tervit R, Roberts R, Adamson J, Adams S, Decker M (2006) Cryoperservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology 52:152–156

  • Stanier R, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanniou A, Turpin V, Lebeau T (2012) Comparison of cryopreservation methods for the long term storage of the marine diatom Haslea ostrearia (Simonsen). Cryobiology 65:45–50

    Article  CAS  PubMed  Google Scholar 

  • Tzovenis I, Triantaphyllidis G, Naihong X, Chatzinikolaou E, Papadopoulou K, Xouri G, Tafas T (2004) Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquacultural food chain. Aquaculture 230:457–473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Qatar Airways and the Qatar Scientific Technology Park (QSTP) and hosted by Qatar University. Very special regards go to the memory of Pr. Malcolm Potts who was always supportive and helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Saadaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadaoui, I., Al Emadi, M., Bounnit, T. et al. Cryopreservation of microalgae from desert environments of Qatar. J Appl Phycol 28, 2233–2240 (2016). https://doi.org/10.1007/s10811-015-0743-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0743-x

Keywords

Navigation