Journal of Applied Phycology

, Volume 28, Issue 3, pp 1931–1942 | Cite as

Extraction process optimization of sulfated galactan-rich fractions from Hypnea musciformis in order to obtain antioxidant, anticoagulant, or immunomodulatory polysaccharides

  • Monique Gabriela das Chagas Faustino Alves
  • Jailma Almeida-Lima
  • Almino Afonso Oliveria Paiva
  • Edda Lisboa Leite
  • Hugo Alexandre Oliveira Rocha


The seaweed Hypnea musciformis synthesizes sulfated galactans and these galactans have been reported to have antioxidant, anticoagulant, and immunostimulatory properties. However, efficient extraction of these polysaccharides depends on the particular extraction method used, some of these polysaccharides are not extracted. Previously, we obtained galactans with different properties by using a simple extraction method. Here, we performed slight modifications to the extraction method, which led to variation in the type of polysaccharides obtained and their biological activity. We obtained four sulfated galactan-rich fractions named as FT4v, FT6v, FT8v, and FT10v. The chemical composition data showed that the fractions had high sugar and sulfate contents. Fraction FT4v exhibited the highest sulfate/sugar ratio (0.47), while FT6v (0.37), FT8v (0.39), and FT10v (0.39) presented lower sulfate/sugar ratios. Fractions FT4v and FT6v showed the highest antioxidant activity. Fraction FT4v also exhibited the greatest anticoagulant potential; however, other fractions presented marked immunomodulatory action. FT10v stimulated the highest levels of NO production whereas FT6v stimulated the highest expression of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in RAW cells. Fraction FT10v exhibited the greatest cytotoxic action of the obtained fractions against HeLa and 786 cell lines. In vitro tests showed that the sulfated galactan-rich fractions isolated from H. musciformis with low sulfate/sugar ratios, i.e., the fractions containing fewer sulfated polysaccharides (FT6v, FT8v, and FT10v), showed marked immunostimulatory action while the fraction with the high sulfate/sugar ratio (FT4v) exhibited improved anticoagulant activity. Therefore, our results suggest that different extraction conditions promote the acquisition of sulfated galactan-rich fractions from H. musciformis with different biological activities.


Galactans Sulfated polysaccharides Red seaweed Biological activity 


  1. Alves MGCF, Dore CMPG, Castro AJG, Nascimento MS, Cruz AKM, Soriano EM, Benevides NMB, Leite EL (2012a) Antioxidant, cytotoxic and hemolytic effects of sulfated galactans from edible red alga Hypnea musciformis. J Appl Phycol 24:1217–1227CrossRefGoogle Scholar
  2. Alves MGCF, Nobre LTDB, Monteiro NKV, Moura GEDD, Dore CMPG, Medeiros VP, Leite EL (2012b) Effects of heparinoids from algae on hemostasis and their action on the cycle cell. Biomed Prevent Nutr 2:163–168Google Scholar
  3. Baugh JA, Bucala R (2001) Mechanisms for modulating TNF-α in immune inflammatory disease. Curr Opin Drug Disc 4:635–650Google Scholar
  4. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  5. Campo VL, Kawano DF, da Silva Jr DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohyd Polym 77:167–180Google Scholar
  6. Carlucci MJ, Pujol CA, Ciancia M, Noseda MD, Matulewicz MC, Damonte EB, Cerezo AS (1997) Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int J Biol Macromol 20:97–105CrossRefPubMedGoogle Scholar
  7. Costa LS, Fidelis GP, Cordeiro SL, Oliveira RM, Sabry DA, Câmara RBG, Nobre TDB, Costa MSSP, Almeida-Lima J, Farias EHC, Leite EL, Rocha HAO (2010) Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 64:21–28CrossRefPubMedGoogle Scholar
  8. Damasceno SRB, Rodrigues JC, Silva RO, Nicolau LAD, Chaves LS, Freitas ALP, Souza MHLP, Barbosa ALR, Medeiros J-VR (2013) Role of the NO/KATP pathway in the protective effect of a sulfated-polysaccharide fraction from the algae Hypnea musciformis against ethanol-induced gastric damage in mice. Rev Bras Farmacogn 23:320–328CrossRefGoogle Scholar
  9. Dietrich CP, Dietrich SM (1976) Electrophoretic behaviour of acidic mucopolysaccharides in diamine buffers. Anal Biochem 70:645–647CrossRefPubMedGoogle Scholar
  10. Dodgson KS, Price RG (1962) A note on the determination of ester sulphate content of sulphated polysaccharides. Biochem J 84:106–110CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  12. Farias WRL, Valentei AP, Pereira MS, Mourão PAS (2000) Structure and anticoagulant activity of sulfated galactans. J Biol Chem 275:29299–29307CrossRefPubMedGoogle Scholar
  13. Fernández PV, Quintana I, Cerezo AS, Caramelo JJ, Pol-Fachin L, Verli H, Estevez JM, Ciancia M (2013) Anticoagulant activity of a unique sulfated pyranosic (1→3)-β-L-arabinan through direct interaction with thrombin. J Biol Chem 288:223–233CrossRefPubMedPubMedCentralGoogle Scholar
  14. Geraldino PJL, Yang EC, Kim MS, Boo SM (2009) Systematics of Hypnea asiatica sp. nov. (Hypneaceae, Rhodophyta) based on morphology and nrDNA SSU, plastid rbcL, and mitochondrial cox1. Taxon 58:606–616Google Scholar
  15. Harding S (1974) Studies of variations in carrageenan and effects of growth regulators in Chondrus crispus. MSc thesis. Dalhousie Univ, Halifax, CanadaGoogle Scholar
  16. Jackson SG, McCandless EL (1979) Incorporation of [35S] sulfate and [14C] bicarbonate into karyotypespecific polysaccharides of Chondrus crispus. Plant Physiol 64:585–589CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jung HA, Jin SE, Choi RJ, Kim DH, Kim YS, Ryu JH, Kim DW, Son YK, Park JJ, Choi JS (2010) Anti-amnesic activity of neferine with antioxidant and anti-inflammatory capacities, as well as inhibition of ChEs and BACE1. Life Sci 87:420–430CrossRefPubMedGoogle Scholar
  18. Leiro JM, Castro R, Arranz JA, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol 7:879–888Google Scholar
  19. Lins KOAL, Bezerra DP, Alves APNN, Alencar NMN, Lima MW, Torres VM, Farias WRL, Pessoa C, Moraes MO, Costa-Lotufo LV (2009) Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J Appl Toxicol 29:20–26CrossRefPubMedGoogle Scholar
  20. Marinho-Soriano E, Bourret E (2003) Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour Technol 90:329–333CrossRefPubMedGoogle Scholar
  21. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188:82–97CrossRefPubMedGoogle Scholar
  22. Mohacek-Gresev V, Bozac R, Puppels GJ (2001) Vibrational spectroscopic characterization of wild growing mushrooms and toadstools. Spectrochim Acta A 57:2815–2829CrossRefGoogle Scholar
  23. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  24. Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic, New York, p 219Google Scholar
  25. Perfecto PNM (1998) Relation between chemical composition of Grateloupia doryphora (Montagne) Howe, Gymnogongrus griffithsiae (Turner) Martius, and abiotic parameter. Acta Bot Bras 12:77–88Google Scholar
  26. Pomin VH (2010) Structural and functional insights into sulfated galactans: a systematic review. Glycoconjugate J 27:1–12CrossRefGoogle Scholar
  27. Qi H, Zhang Q, Zhao T, Chen R, Zhang H, Niu X, Li Z (2005) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol 37:195–199CrossRefPubMedGoogle Scholar
  28. Reis RP, Yoneshigue-Valentin Y, Santos CP (2008) Spatial and temporal variation of Hypnea musciformis carrageenan (Rhodophyta-Gigartinales) from natural beds in Rio de Janeiro State, Brazil. J Appl Phycol 20:1–8CrossRefGoogle Scholar
  29. Rodrigues JAG, Torres VM, Alencar DB, Sampaio AH, Farias WRL (2009) Extração e atividade anticoagulante dos polissacarídeos sulfatados da alga marinha vermelha Halymenia pseudofloresia. Rev Ciên Agron 40:224–231Google Scholar
  30. Sekkal M, Legrand P (1993) A spectroscopic investigation of the carrageenans and agar in the 1500–100 cm−1 spectral range. Spectrochim Acta A 49:209–221CrossRefGoogle Scholar
  31. Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252–259CrossRefPubMedGoogle Scholar
  32. Silva JMC, Dantas-Santos N, Gomes DL, Costa LS, Cordeiro SL, Costa MSSP, Silva NB, Freitas ML, Scortecci KC, Leite EL, Rocha HAO (2012) Biological activities of the sulfated polysaccharide from the vascular plant Halodule wrightii. Rev Bras Farmacogn 22:94–101CrossRefGoogle Scholar
  33. Sobota RM, Müller PJ, Khouri C, Ullrich A, Poli V, Noguchi T, Heinrich PC, Schaper F (2008) SHPS-1/SIRP1_ contributes to interleukin-6 signalling. Cell Signal 20:1385–1391CrossRefPubMedGoogle Scholar
  34. Wijesekara I, Pangestuti R, Kim S-K (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohyd Polym 84:14–21CrossRefGoogle Scholar
  35. Wu W, Zhu Y, Zhang L, Yang R, Zhou Y (2012) Extraction, preliminary structural characterization, and antioxidant activities of polysaccharides from Salvia miltiorrhiza Bunge. Carbohyd Polym 87:1348–1353CrossRefGoogle Scholar
  36. Zhao X, Xue CH, Li ZJ, Cai YP, Liu HY, Qi HT (2004) Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica. J Appl Phycol 16:111–115CrossRefGoogle Scholar
  37. Zhou G, Sunc YP, Xin H, Zhang Y, Li Z, Xu Z (2004) In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol Res 50:47–53CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Monique Gabriela das Chagas Faustino Alves
    • 1
  • Jailma Almeida-Lima
    • 1
  • Almino Afonso Oliveria Paiva
    • 1
  • Edda Lisboa Leite
    • 1
  • Hugo Alexandre Oliveira Rocha
    • 1
  1. 1.Universidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations