Journal of Applied Phycology

, Volume 28, Issue 2, pp 1371–1378 | Cite as

Oxidative stress biomarkers in organs of hyperlipidaemic and normal rats fed tropical red seaweed, Gracilaria changii

  • Pei Teng Chan
  • Patricia Matanjun
  • Suhaimi Md Yasir
  • Tek Song Tan


The aim of the study was to evaluate the effects of normal and high-cholesterol/fat diet supplemented with 5 and 10 % freeze-dried red seaweed, Gracilaria changii powder on rat organs (liver, kidney and heart), lipid peroxidation and antioxidant enzyme activities. The results showed that feeding with atherogenic diet alone caused lipid peroxidation which eventually leads to oxidative stress of the rat’s organs. Nevertheless, with 10 % G. changii supplementation, it significantly decreased the liver lipid peroxidation by 52.24 %, and the antioxidant enzyme activities were significantly increased by 52.09 to 94.42 %. Similarly, with G. changii supplementation, it significantly enhanced the kidney antioxidant enzyme activities. This suggests that G. changii suppress oxidative stress and protect the rats’ organs. In conclusion, G. changii could be a promising functional food ingredient in the management of hyperlipidaemia.


Lipid peroxidation Enzymes antioxidants Hyperlipidaemic Red seaweed 



The authors thank the Fisheries Research Institute Malaysia Sarawak and the Seaweed Research Unit at Universiti Malaysia Sabah for supplying the seaweed. This study was funded by the Ministry of Science, Technology and Innovation of Malaysia (MOSTI), Project code: 06-01-10-SF0163.


  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  2. Anila L, Vijayalakshmi NR (2003) Antioxidant action of flavonoids from Mangifera indica and Emblica officinalis in hypercholesterolemic rats. Food Chem 83:569–574CrossRefGoogle Scholar
  3. Artiss JD, Brogan K, Brucal M, Moghaddam M, Jen KL (2006) The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats. Metab Clin Exp 55:195–202CrossRefPubMedGoogle Scholar
  4. Avramovic N, Dragutinovic V, Krstic D, Colovic M, Trbovic A, de Luka S, Milovanovic I, Popovic T (2012) The effects of omega 3 fatty acid supplementation on brain tissue oxidative status in aged Wistar rats. Hippokratia 16:241–245PubMedPubMedCentralGoogle Scholar
  5. Baker GL, Corry RJ, Autor AP (1985) Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Protective effect of superoxide dismutase. Ann Surg 202:628–641CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bocanegra A, Nieto A, Blas B, Sánchez-Muniz FJ (2003) Diets containing a high percentage of Nori or Konbu algae are well-accepted and efficiently utilised by growing rats but induce different degrees of histological changes in the liver and bowel. Food Chem Toxicol 41:1473–1480CrossRefPubMedGoogle Scholar
  7. Bocanegra A, Beneduí J, Sánchez-Muniz FJ (2006) Differential effects of konbu and nori seaweed dietary supplementation on liver glutathione status in normo and hypercholesterolaemic growing rats. Br J Nutr 95:696–702CrossRefPubMedGoogle Scholar
  8. Bocanegra A, Nieto A, Bastida S, Benedí J, Sánchez-Muniz FJ (2008) A Nori but not a Konbu, dietary supplement decreases the cholesterolaemia, liver fat infiltration and mineral bioavailability in hypercholesterolaemic growing Wistar rats. Br J Nutr 99:272–280CrossRefPubMedGoogle Scholar
  9. Bouderbala S, Lamri-Senhadji M, Prost J, Lacaille-Dubois MA, Bouchenak M (2008) Changes in antioxidant defense status in hypercholesterolemic rats treated with Ajuga iva. Phytomedicine 15:453–661CrossRefPubMedGoogle Scholar
  10. Brady PS, Brady LJ, Ullrey AE (1979) Selenium, vitamin E and the response to swimming stress in the rat. J Nutr 109:1103–1109PubMedGoogle Scholar
  11. Cejková J, Vejrazka M, Pláteník J, Stípek S (2004) Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea. Exp Gerontol 39:1537–1543CrossRefPubMedGoogle Scholar
  12. Chan PT, Matanjun P, Yasir SM, Tan TS (2014) Antioxidant and hypolipidaemic properties of red seaweed, Gracilaria changii. J Appl Phycol 26:987–997CrossRefGoogle Scholar
  13. Chan PT, Matanjun P, Yasir SM, Tan TS (2015) Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. J Appl Phycol. doi: 10.1007/s10811-014-0493-1 Google Scholar
  14. Cofrades S, López-López I, Bravo L, Ruiz-Capillas C, Bastida S, Larrea MT, Jiménez-Colmenero F (2010) Nutritional and antioxidant properties of different brown and red Spanish edible seaweeds. Food Sci Technol Int 16:361–370CrossRefPubMedGoogle Scholar
  15. Dhanapal R, Anbalagan T, Sivasuriyan S (2009) Hematological and histological response of Wister albino rat Rattus norvegicus a dietary supplement of seaweed diet Gracilaria edulis. Int J Anim Vet Adv 1:28–31Google Scholar
  16. Dousip A, Matanjun P, Sulaiman MR, Tan TS, OOi YBH, Lim TP (2014) Effect of seaweed mixture intake on plasma lipid and antioxidant profile of hyperholesterolaemic rats. J Appl Phycol 26:999–1008CrossRefGoogle Scholar
  17. Fang Y-Z, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879CrossRefPubMedGoogle Scholar
  18. Fernandes D, de Oliveira V, Yoneshigue Valentin Y (2014) Seaweed biotechnology in Brazil: six decades of studies on natural products and their antibiotic and other biological activities. J Appl Phycol 26:1923–193CrossRefGoogle Scholar
  19. Green CO, Wheatley AOB, McGrowder DA, Dilworth LL, Asemota HN (2012) Modulation of antioxidant enzymes activities and lipid peroxidation products in diet-induced hypercholesterolemic rats fed ortanique peel polymethoxylated flavones extract. J Appl Biomed 10:91–101CrossRefGoogle Scholar
  20. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597CrossRefGoogle Scholar
  21. Kang MY, Kim SM, Rico CW, Lee S (2012) Hypolipidemic and antioxidative effects of rice bran and phytic acid in high fat-fed mice. Food Sci Biotechnol 21:123–128CrossRefGoogle Scholar
  22. Khan KH (2009) The effects of regular intake of Terminalia chebula on oxidative stress in mice originated from Salmonella typhimurium. Eurasian J Biosci 3:113–121CrossRefGoogle Scholar
  23. Kwok C-Y, Wong CN-Y, Yau MY-C, Yu PH-F, Au ALS, Poon CC-W, Seto S-W, Lam T-Y, Kwan Y-W, Chan S-W (2010) Consumption of dried fruit of Crataegus pinnatifida (hawthorn) suppresses high-cholesterol diet-induced hypercholesterolemia in rats. J Funct Foods 2:179–186CrossRefGoogle Scholar
  24. Lecumberri E, Goya L, Mateos R, Alía M, Ramos S, Izquierdo-Pulido M, Bravo L (2007) A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 23:332–341CrossRefPubMedGoogle Scholar
  25. Limón-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–47CrossRefPubMedGoogle Scholar
  26. Liu J, Yeo HC, Övervik-Douki E, Hagen T, Doniger SJ, Chyu DW, Brooks GA, Ames BN (2012) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89:21–28Google Scholar
  27. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 474:469–474CrossRefGoogle Scholar
  28. Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21:75–80CrossRefGoogle Scholar
  29. Matanjun P, Mohamed S, Muhammad K, Mustapha NM (2010) Comparison of cardiovascular protective effects of tropical seaweeds, Kappaphycus alvarezii, Caulerpa lentillifera, and Sargassum polycystum, on high-cholesterol/high-fat diet in rats. J Med Food 13:792–800CrossRefPubMedGoogle Scholar
  30. Micallef MA, Garg ML (2009) Beyond blood lipids: phytosterols, statins and omega-3 polyunsaturated fatty acid therapy for hyperlipidemia. J Nutr Biochem 20:927–939CrossRefPubMedGoogle Scholar
  31. Montilla P, Espejo I, Muñoz MC, Bujalance I, Muñoz-Castañeda JR, Tunez I (2006) Protective effect of red wine on oxidative stress and antioxidant enzyme activities in the brain and kidney induced by feeding high cholesterol in rats. Clin Nutr 25:146–153CrossRefPubMedGoogle Scholar
  32. Motshakeri M, Ebrahimi M, Goh YM, Othman HH, Hair-Bejo M, Mohamed S (2014) Effects of brown seaweed (Sargassum polycystum) extracts on kidney, liver, and pancreas of Type 2 diabetic rat model. Evid Based Complement Altern Med 2014:1–11Google Scholar
  33. O’Sullivan AM, O’Callaghan YC, O’Grady MN, Queguineur B, Hanniffy D, Troy DJ, Kerry JP, O’Brien NM (2011) In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem 126:1064–1070CrossRefGoogle Scholar
  34. Prasad K, Gupta JB, Kalra J, Lee P, Mantha SV, Bharadwaj B (1996) Oxidative stress as a mechanism of cardiac failure in chronic volume overload in canine model. J Mol Cell Cardiol 28:375–385CrossRefPubMedGoogle Scholar
  35. Raja B, Saravanakumar M, Sathya G (2012) Veratric acid ameliorates hyperlipidemia and oxidative stress in Wistar rats fed an atherogenic diet. Mol Cell Biochem 366:21–30CrossRefPubMedGoogle Scholar
  36. Rajauria G, Jaiswal AK, Abu-Gannam N, Gupta S (2012) Antimicrobial, antioxidant and free radical-scavenging capacity of brown seaweed Himanthalia elongata from western coast of Ireland. J Food Biochem 37:322–335CrossRefGoogle Scholar
  37. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661CrossRefPubMedGoogle Scholar
  38. Ren D, Noda H, Amano H, Nishino T, Nishizawa K (1994) Study on antihypertensive and antihyperlipidemic effects of marine algae. Fish Sci 60:83–88Google Scholar
  39. Scott RB, Reddy KS, Husain K, Schlorff EC, Rybak LP, Somani SM (2000) Dose response of ethanol on antioxidant defense system of liver, lung, and kidney in rat. Pathophysiology 7:25–32CrossRefPubMedGoogle Scholar
  40. Shah MD, Iqbal M (2010) Diazinon-induced oxidative stress and renal dysfunction in rats. Food Chem Toxicol 48:3345–3353CrossRefPubMedGoogle Scholar
  41. Sivoňová M, Tatarková Z, ĎuraKová DD, Lehotský J, Matáková T, Kaplán P (2007) Relationship between antioxidant potential and oxidative damage to lipids, proteins and DNA in aged rats. Phycol Res 56:757–764Google Scholar
  42. Vairappan CS (2003) Potent antibacterial activity of halogenated metabolites from Malaysian red algae, Laurencia majuscula (Rhodomelaceae, Ceramiales). Biomol Eng 20:255–259CrossRefPubMedGoogle Scholar
  43. Vázquez-Castilla S, De la Puerta R, Garcia-Gimenez MD et al (2013) Bioactive constituents from “triguero” asparagus improve the plasma lipid profile and liver antioxidant status in hypercholesterolemic rats. Int J Mol Sci 14:21227–21239CrossRefPubMedPubMedCentralGoogle Scholar
  44. Visavadiya NP, Narasimhacharya AV (2007) Hypocholesteremic and antioxidant effects of Withania somnifera (Dunal) in hypercholesteremic rats. Phytomedicine 14:136–142CrossRefPubMedGoogle Scholar
  45. Zhu L, Luo X, Jin Z (2008) Effect of Resveratrol on serum and liver lipid profile and antioxidant activity in hyperlipidemia rats. Asian-Australasian J Anim Sci 21:890–895CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pei Teng Chan
    • 1
  • Patricia Matanjun
    • 1
  • Suhaimi Md Yasir
    • 2
  • Tek Song Tan
    • 3
  1. 1.Faculty of Food Science and NutritionUniversiti Malaysia Sabah, Jalan UMSKota KinabaluMalaysia
  2. 2.Faculty of Science and Natural ResourcesUniversiti Malaysia Sabah, Jalan UMSKota KinabaluMalaysia
  3. 3.Faculty of Medicine and Health SciencesUniversiti Malaysia Sabah, Jalan UMSKota KinabaluMalaysia

Personalised recommendations