Journal of Applied Phycology

, Volume 27, Issue 5, pp 1755–1762 | Cite as

Reliable production of microalgae biomass using a novel microalgae platform

  • Stefan Matthes
  • Martin Matschke
  • Fritz Cotta
  • Jochen Grossmann
  • Carola Griehl
5th Congress of the International Society for Applied Phycology


A microalgae platform, consisting of four photobioreactor units incorporating a novel biomimetic design, has been installed at the Biosolar Center in Koethen, Germany. The novel photobioreactor consists of a flexible, tubular double-wall hose system (silicone based) with integrated temperature control in a closed cycle. The modular-arranged platform system (total cultivation volume 1700 L) has been designed for stable long-term cultivation of microalgae biomass in outdoor use. Cultures with Scenedesmus and Chlorella species have been grown outdoors at their optimal growth temperature (avg. 26 °C) for 145 days during spring and summer and were tested successfully for the stable production of microalgae (avg. biomass productivity 0.3 g L−1 day−1 (max. 0.75 g L−1 day−1)) with an overall photosynthetic conversion efficiency of 7.2 % based on photosynthetically active radiation. The average calorific value of the produced biomass is 23.25 MJ kg−1 with defined product quality (content relating to biomass dry weight: proteins 0.40 g g−1, lipophilic compounds 0.38 g g−1 and total carotenoids 11 mg g−1). This outdoor concept is continuously adjustable to maintain an optimal environment for microalgae cultures (in particular light entry, temperature control and limiting of oxygen levels).


Biomimetic design Christmas tree photobioreactor Outdoor cultivation Temperature control 



This R&D work of the research group of Prof. Dr. C. Griehl and GICON® is funded by the European Union and the German Federal State of Saxony-Anhalt.


  1. Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353CrossRefPubMedGoogle Scholar
  2. Barbosa MJ (2003) Microalgal photobioreactors: scale-up and optimisation. PhD Thesis, Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  3. Bilad MR, Arafat HA, Vankelecom IFJ (2014) Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv 32:1283–1300CrossRefPubMedGoogle Scholar
  4. Bligh EG, Dyer WJ (1959) A rapid method of lipid extraction and purification. Can J Physiol Pharmacol 37:911–917CrossRefGoogle Scholar
  5. Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53:545–548CrossRefGoogle Scholar
  6. Borowitzka MA (1996) Closed algal photobioreactors: design considerations for large-scale systems. J Mar Biotechnol 4:185–191Google Scholar
  7. Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  8. Brennan L, Owende P (2013) Biofuels from microalgae: towards meeting advanced fuel standards. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 553–599CrossRefGoogle Scholar
  9. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506CrossRefPubMedGoogle Scholar
  10. Chai X, Zhao X (2012) Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresour Technol 116:360–365CrossRefPubMedGoogle Scholar
  11. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329CrossRefGoogle Scholar
  12. Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49CrossRefGoogle Scholar
  13. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  14. Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531CrossRefGoogle Scholar
  15. Hinkens D (2013) Gravity flow tubular photobioreactor and photobioreactor farm. US Patent US20130023043Google Scholar
  16. Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol 102:6687–6695CrossRefPubMedGoogle Scholar
  17. Jacobi A, Posten C (2013) Energy considerations of photobioreactors. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 223–232CrossRefGoogle Scholar
  18. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413CrossRefPubMedGoogle Scholar
  19. Laurens LML, Dempster TA, Jones HDT, Wolfrum EJ, Van Wychen S, McAllister JSP, Rencenberger M, Parchert KJ, Gloe LM (2012) Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal Chem 84:1879–1887CrossRefPubMedGoogle Scholar
  20. Lourenço SO, Barbarino E, Lavín PL, Lanfer Marquez UM, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32CrossRefGoogle Scholar
  21. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  22. Moheimani NR (2013) Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. J Appl Phycol 25:167–176CrossRefGoogle Scholar
  23. Molina Grima E, Sánchez Pérez JA, García Camacho F, García Sánchez JL, Acién Fernández FG, López Alonso D (1994) Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. J Biotechnol 37:159–166CrossRefGoogle Scholar
  24. Morita M, Watanabe Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69:693–698CrossRefPubMedGoogle Scholar
  25. Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301CrossRefPubMedGoogle Scholar
  26. Mueller-Rees C, Pfaller R, Walter C, Cotta F (2011) Tubular photobioreactor. WIPO patent 2011048108 A2Google Scholar
  27. Muller-Feuga A, Lemar M, Vermel E, Pradelles R, Rimbaud L, Valiorgue P (2012) Appraisal of a horizontal two-phase flow photobioreactor for industrial production of delicate microalgae species. J Appl Phycol 24:349–355CrossRefGoogle Scholar
  28. Ojanen S, Tyystjärvi E, Holmberg H, Ahtila P (2014) Porous membrane as a means of gas and nutrient exchange in a tubular photobioreactor. J Appl Phycol. doi: 10.1007/s10811-014-0397-0:1-7 Google Scholar
  29. Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506CrossRefGoogle Scholar
  30. Posten C (2009) Design principles of photo‐bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177CrossRefGoogle Scholar
  31. Posten C, Rosello‐Sastre R (2010) Microalgae reactors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley‐VCH, Weinheim, pp 145–156Google Scholar
  32. Raes EJ, Isdepsky A, Muylaert K, Borowitzka MA, Moheimani NR (2014) Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. J Appl Phycol 26:247–255CrossRefGoogle Scholar
  33. Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12:153–164CrossRefGoogle Scholar
  34. Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford, pp 125–177Google Scholar
  35. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332CrossRefGoogle Scholar
  36. Robinson LF, Morrison AW, Bamforth MR (1988) Improvements relating to biosynthesis. European Patent EP0261872A2Google Scholar
  37. Schoepp NG, Stewart RL, Sun V, Quigley AJ, Mendola D, Mayfield SP, Burkart MD (2014) System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresour Technol 166:273–281CrossRefPubMedGoogle Scholar
  38. Scragg AH, Illmann AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73CrossRefGoogle Scholar
  39. Setlik I (1968) Growth and photosynthetic characteristics of algae. In: Necas J, Lhotský O (ed) Annual report of the Laboratory of Experimental Algology and Department of Applied Algology for the Year 1967, Trebon. pp 71–128Google Scholar
  40. Sierra E, Acién FG, Fernández JM, García JL, González C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147CrossRefGoogle Scholar
  41. Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564CrossRefPubMedGoogle Scholar
  42. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing, Oxford, pp 178–214Google Scholar
  43. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197CrossRefPubMedGoogle Scholar
  44. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028CrossRefPubMedGoogle Scholar
  45. Watanabe Y, Hall DO (1996) Photosynthetic CO2 conversion technologies using a photobioreactor incorporating microalgae—energy and material balances. Energy Convers Manag 37:1321–1326CrossRefGoogle Scholar
  46. Watanabe Y, de la Noüe J, Hall DO (1995) Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnol Bioeng 47:261–269CrossRefPubMedGoogle Scholar
  47. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313CrossRefGoogle Scholar
  48. Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In Richmond A, Hu Q (eds) Handbook of microalgal culture, 2nd edn. Wiley, pp 225–266Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Stefan Matthes
    • 1
  • Martin Matschke
    • 2
  • Fritz Cotta
    • 2
  • Jochen Grossmann
    • 2
  • Carola Griehl
    • 1
  1. 1.Research Group Algae BiotechnologyAnhalt University of Applied SciencesKoethenGermany
  2. 2.GICON® GmbHBitterfeld-WolfenGermany

Personalised recommendations