Advertisement

Journal of Applied Phycology

, Volume 27, Issue 3, pp 1365–1372 | Cite as

Selection of reference gene from Gracilaria lemaneiformis under temperature stress

  • Yan Ding
  • Hengyi Sun
  • Ran Zhang
  • Qin Yang
  • Yuantao Liu
  • Xiaonan Zang
  • Xuecheng Zhang
Article

Abstract

Selection of a reliable reference gene for the normalization of RT-qPCR data is important to obtain accurate results in the study of gene expression. To elucidate the effects of temperature on the gene expression in Gracilaria lemaneiformis, this study aimed to find an appropriate reference gene from ten candidate genes, including actin (ACT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), elongation factor 1 (EF1), eukaryotic translation initiation factor (eIF), histone (H2B), 18S ribosomal rRNA (18S rRNA), internal transcribed spacer 2 (ITS2), cytochrome c oxidase (COX), cytochrome b-5 reductase (CR) and phycoerythrin (PEB) of G. lemaneiformis under temperature stress. Programs geNorm and NormFinder were used to analyze the data of RT-qPCR. The results showed that the best reference gene combination was eIF, ACT for 32°C different treatments, GAPDH, ITS2, CR, and 18SrRNA for 8 °C different treatments, GAPDH, EF1 and ACT for different temperature treatments, and GAPDH and ACT for different life generations. This study provides the useful reference genes for future gene expression studies of G. lemaneiformis under temperature stress.

Keywords

Reference gene RT-qPCR Gracilaria lemaneiformis Temperature 

Notes

Acknowledgments

This research was supported by the Research Fund for the National High Technology Research and Development Program of China (Grant No. 2012AA10A411), the Agricultural Science and Technology Achievements Transformation Project of the Ministry of Science and Technology of China (Grant No. 2012GB2E000340), and the National Natural Science Foundation of China (Grant No. 31472255).

References

  1. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250CrossRefPubMedGoogle Scholar
  2. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622CrossRefPubMedGoogle Scholar
  3. Cao SN, Zhang XW, Ye NH, Fan X, Mou SL, Xu D, Liang CW, Wang YT, Wang WQ (2012) Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR. Biochem Biophys Res Commun 424:118–123CrossRefPubMedGoogle Scholar
  4. Dong MT, Zhang XW, Chi XY, Mou SL, Xu JF, Xu D, Wang WQ, Ye NH (2012) The validity of a reference gene is highly dependent on the experimental conditions in green alga Ulva linza. Curr Genet 58:13–20CrossRefPubMedGoogle Scholar
  5. Gu YH, Zhang X, Lu N, Zang XN, Zhang XC, Li GQ (2012) Cloning and transcription analysis of hsp70-1 and hsp70-2 of Gracilaria lemaneiformis under heat shock. Aquaculture 358:284–291CrossRefGoogle Scholar
  6. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284CrossRefPubMedGoogle Scholar
  7. Kianianmomeni A, Hallmann A (2013) Validation of reference genes for quantitative gene expression studies in Volvox carteri using real-time RT-PCR. Mol Biol Rep 40:6691–6699CrossRefPubMedGoogle Scholar
  8. Le Bail A, Dittami SM, de Franco PO, Rousvoal S, Cock MJ, Tonon T, Charrier B (2008) Normalization genes for expression analyses in the brown alga model Ectocarpus siliculosus. BMC Mol Biol 9:75–84CrossRefPubMedCentralPubMedGoogle Scholar
  9. Li QF, Sun SS, Yuan DY, Yu HX, Gu MH, Liu QQ (2010) Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Report 28:49–57CrossRefGoogle Scholar
  10. Liu CL, Wu GT, Huang XH, Liu SH, Cong BL (2012) Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles 16:419–425CrossRefPubMedGoogle Scholar
  11. Lu N, Ding Y, Zang XN, Zhang XC, Chen H, Mu XS (2013) Molecular cloning and expression analysis of glutathione peroxidase and glutathione reductase from Gracilaria lemaneiformis under heat stress. J Appl Phycol 25:1925–1931CrossRefGoogle Scholar
  12. Mehdi Khanlou K, Van Bockstaele E (2012) A critique of widely used normalization software tools and an alternative method to identify reliable reference genes in red clover (Trifolium pratense L.). Planta 236:1381–1391CrossRefPubMedGoogle Scholar
  13. Murthi P, Fitzpatrick E, Borg AJ, Donath S, Brennecke SP, Kalionis B (2008) GAPDH, 18S rRNA and YWHAZ are suitable endogenous reference genes for relative gene expression studies in placenta tissues from human idiopathic fetal growth restriction. Placenta 29:798–801CrossRefPubMedGoogle Scholar
  14. Ohl F, Jung M, Radonić A, Sachs M, Loening SA, Jung K (2006) Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J Urol 175:1915–1920CrossRefPubMedGoogle Scholar
  15. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45CrossRefPubMedCentralPubMedGoogle Scholar
  16. Qi ZH, Liu HM, Li B, Mao YZ, Jiang ZJ, Zhang JH, Fang JG (2010) Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture 300:189–193CrossRefGoogle Scholar
  17. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862CrossRefPubMedGoogle Scholar
  18. Rosic NN, Pernice M, Rodriguez-Lanetty M, Hoegh-Guldberg O (2011) Validation of housekeeping genes for gene expression studies in Symbiodiniumexposed to thermal and light stress. Mar Biotechnol 13: 355–365. doi: 10.1007/s10126-010-9308-9
  19. Tatsumi K, Ohashi K, Taminishi S, Okano T, Yoshioka A, Shima M (2008) Reference gene selection for real-time RT-PCR in regenerating mouse livers. Biochem Biophys Res Commun 374:106–110CrossRefPubMedGoogle Scholar
  20. Thomas F, Barbeyron T, Michel G (2011) Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans. J Microbiol Methods 84:61–66CrossRefPubMedGoogle Scholar
  21. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7): research0034-research0034.11Google Scholar
  22. Wan Q, Whang I, Choi CY, Lee JS, Lee J (2011) Validation of housekeeping genes as internal controls for studying biomarkers of endocrine-disrupting chemicals in disk abalone by real-time PCR. Comp Biochem Physiol C 153:259–268Google Scholar
  23. Wu XJ, Niu JF, Huang AY, Xu ML, Wang GC (2012) Selection of internal control gene for expression studies in Porphyra haitanensis (Rhodophyta) at different life-history stages. J Phycol 48:1040–1044CrossRefGoogle Scholar
  24. Xu YY, Zhu XW, Gong YQ, Xu L, Wang Y, Liu LW (2012) Evaluation of reference genes for gene expression studies in radish (Raphanus sativus L.) using quantitative real-time PCR. Biochem Biophys Res Commun 424:398–403CrossRefPubMedGoogle Scholar
  25. Yang HS, Zhou Y, Mao YZ, Li XX, Liu Y, Zhang FS (2005) Growth characters and photosynthetic capacity of Gracilaria lemaneiformis as a biofilter in a shellfish farming area in Sanggou Bay, China. J Appl Phycol 17:199–206CrossRefGoogle Scholar
  26. Yang YF, Fei XG, Song JM, Hu HY, Wang GC, Chung IK (2006) Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248–255CrossRefGoogle Scholar
  27. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, Chen JY, Lu WJ, Li JG (2011) Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30:641–653CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Yan Ding
    • 1
  • Hengyi Sun
    • 1
  • Ran Zhang
    • 1
  • Qin Yang
    • 1
  • Yuantao Liu
    • 1
  • Xiaonan Zang
    • 1
  • Xuecheng Zhang
    • 1
  1. 1.Key Laboratory of Marine Genetics and Breeding, Ministry of EducationOcean University of ChinaQingdaoChina

Personalised recommendations