Journal of Applied Phycology

, Volume 26, Issue 5, pp 1963–1969 | Cite as

The effects of different light intensities on the culture of Gigartina skottsbergii (Rhodophyta, Gigartinales) tetrasporophytes and gametophytes in the Magellan region, Chile

  • J. Marambio
  • A. Mansilla
  • M. Ávila
  • S. Rosenfeld
  • J. Ojeda
IV Latin American Congress of Algae Biotechnology (CLABA) and IV Redealgas Workshop


Gigartina skottsbergii is a red seaweed used as raw material for extracting carrageenans, constituting an important economic resource for Chile. In 2009, extraction in the Magellan region reached 15,064 t. The growing demand has adversely affected the sustainability of natural beds, creating an interest in the culture of this resource. In order to provide information relevant to the culture and regeneration of this seaweed, the present study addresses the effects of different light intensities on the growth of G. skottsbergii gametophytes and tetrasporophytes during the early stages of development. Mature reproductive fronds were induced to release spores in the laboratory by a drying process. Gametophytes cultured at different light intensities showed an increase in diameter, which reached 519.13 ± 108.95 μm with 4 μmol photons m−2 s−1, while tetrasporophytes showed a greater increase in diameter, reaching 714.11 ± 116.45 μm with 8 μmol photons m−2 s−1. Results indicate that both stages of the reproductive cycle are influenced by different light intensities within a limited range. Therefore, both phases require different and specific ranges of light intensity.


Gigartina skottsbergii Culture Light intensity Development Magellan region 



Financial support to MA and AM is acknowledged from FONDEF and CONICYT, Chile (Project AQ08I1011). The facilities and equipment required were provided by the Laboratory of Sub-Antarctic Macroalgae (LMAS) University of Magallanes. AM acknowledges the Millennium Scientific Initiative (Grant P05-002 ICM, Chile) and the Basal Financing Program of CONICYT (Grant PFB-23, Chile). SR thanks the Masters Scholarship provided by the Institute of Ecology and Biodiversity (Chile) (code ICM P05-002). The collaboration of Susan Angus in the improvement of the English language of the manuscript is also acknowledged.


  1. Alveal K, Romo H, Werlinger C (1995) Cultivo de Gracilaria a partir de esporas. In: Alveal K, Ferrairo M, Oliveira E, Sar E (eds) Manual de Métodos Ficológicos. Universidad de Concepción, ChileGoogle Scholar
  2. Alveal K, Romo H, Werlinger C, Oliveira EC (1997) Mass cultivation of the agar-producing seaweed Gracilaria chilensis (Rhodophyta) from spores. Aquaculture 148:77–83CrossRefGoogle Scholar
  3. Ávila M, Seguel M (1993) An overview of seaweed resources in Chile. J Appl Phycol 5:133–139CrossRefGoogle Scholar
  4. Ávila M, Otaiza R, Norambuena R, Nuñez M (1996) Biological basis for the management of “Luga Negra” Sarcothalia crispata (Gigartinales, Rhodophyta) in southern Chile. Hydrobiologia 326/327:245–252Google Scholar
  5. Ávila M, Candía A, Nuñez M, Romo H (1999) Reproductive biology of Gigartina skottsbergii (Gigartinaceae, Rhodophyta) from Chile. Hydrobiologia 398/399:149–157Google Scholar
  6. Bird N, McLachlan J, Grund D (1977) Studies on Gracilaria. In vitro life history of Gracilaria sp. from the maritime provinces. Can J Bot 55:1282–1290CrossRefGoogle Scholar
  7. Boalch GT (1961) Studies on Ectocarpus in culture. II. Growth and nutrients of a bacteria free culture. J Mar Biol Assoc UK 41:287–304CrossRefGoogle Scholar
  8. Buschmann AH, Varela D, Cifuentes M, Hernández M, Henríquez L, Westermeier R, Correa JA (2004) Experimental indoor cultivation of the carrageenophytic red seaweed Gigartina skottsbergii. Aquaculture 241:357–370CrossRefGoogle Scholar
  9. Candia A, Gónzalez A, Poblete A, Otaíza R, Avila M (1993) Efecto de factores ambientales sobre la esporulación y viabilidad de esporas en Iridaea ciliata Kützing (Rhodophyta, Gigartinales). Libro de Resúmenes. Symposium de seaweeds marinas chilenas y III Encuentro de Macroalgólogos Iquique, Chile, p 28Google Scholar
  10. Costa V, Plastino E (2001) Histórico de vida de espécimens selvagens e variantes cromáticas de Gracilaria birdiae (Gracilariales, Rhodophyta). Rev Bras Bot Sao Paulo 24(4):491–500Google Scholar
  11. Falkowski P, La Roche J (1991) Acclimation to spectral irradiance in seaweeds. J Phycol 27:8–14CrossRefGoogle Scholar
  12. FAO (1985) FAO species identifications sheets. In: Fisher. W, J. C. Hureu Octava eds.). FAO Fishery Purposes. Southern Ocean. I:60 – 61Google Scholar
  13. Fries L (1963) On the cultivation of axenic red seaweeds. J Plant Physiol 16:695–705CrossRefGoogle Scholar
  14. Gantt E (1990) Pigmentation and photoacclimation. In: Cole KM, Sneath RG (eds) Biology of the red seaweeds. Cambridge University Press, Cambridge, pp 203–219Google Scholar
  15. Gómez I (2001) Ecophysiology of Antarctic macroseaweeds: effects of environmental light conditions on photosynthetic metabolism. Rev Chil Hist Nat 74:251–271CrossRefGoogle Scholar
  16. Gómez I, Wiencke C (1996) Photosynthesis, dark respiration and pigment contents of gametophytes of the Antarctic brown seaweed Desmarestia menziesii. Bot Mar 39:149–157CrossRefGoogle Scholar
  17. Hanelt DC, Wiencke C, Nultsch W (1997) Influence of UV radiation on the photosynthesis of Arctic macroseaweeds in the field. J Photochem Photobiol 38:40–47CrossRefGoogle Scholar
  18. Hannach G, Santelices B (1985) Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta. Gigartinales). Mar Ecol Prog Ser 22:291–303CrossRefGoogle Scholar
  19. Hansen JE (1980) Physiological considerations in the mariculture of red seaweed. In Abbott IA, Foster MS, Eklund LF (eds). Pacific Seaweed Aquaculture. Publ. California Sea Grant Coll. Program, La Jolla: 80–91Google Scholar
  20. Henkel R (1952) Ernährungsphysiologische Untersuchungen an Meeresalgen, insbesondere an Bangia pumila. Kiel Meeresforsch 8:192–211Google Scholar
  21. Kim DH (1976) A study of the development of cystocarps and tetrasporangial sori in the taxonomy of the Gigartinaceae (Rhodophyta, Gigartinales). Nova Hedwigia 26:1–237Google Scholar
  22. Mansilla A, Ávila M (2011) Using Macrocystis pyrifera (L.) C. Agardh from southern Chile as a source of applied biological compounds. Rev Bras Farmacogn 21:262–267CrossRefGoogle Scholar
  23. Mansilla A, Palacios M, Aguilar S (2004) Efecto de la salinidad en el desarrollo inicial de Sarcothalia crispata (Bory) Leister (Rhodophyta, Gigartinales) bajo condiciones de laboratorio. An Inst Patagon (Chile) 32:13–233Google Scholar
  24. Mansilla A, Palacios M, Navarro N, Ávila M (2008a) Growth and survival performance of the gametophyte of Gigartina skottsbergii (Rhodophyta, Gigartinales) under defined nutrient conditions in laboratory culture. J Appl Phycol 20:439–446CrossRefGoogle Scholar
  25. Mansilla A, Palacios M, Navarro N, Ávila M (2008b) Utilization of agricultural fertilizers in the culture of Gigartina skottsbergii (Rhodophyta, Gigartinales) from the Strait of Magellan, Chile. J Appl Phycol 20:889–896CrossRefGoogle Scholar
  26. Marin S, Westermeier R, Melipillán J (2002) Simulation of alternative management strategies for red seaweed, Luga Roja, Gigartina skottsbergii (Setchell and Gardner) in Southern Chile. Ecol Model 154:121–133CrossRefGoogle Scholar
  27. Necchi O Jr (2005) Light-related photosynthetic characteristics of freshwater rhodophytes. Aquat Bot 3:193–209CrossRefGoogle Scholar
  28. Ojeda FP, Santelices B (1984) Invertebrate communities in holdfasts of the kelp Macrocystis pyrifera from southern Chile. Mar Ecol Prog - Ser 16:65–73CrossRefGoogle Scholar
  29. Piriz ML (1996) Phenology of Gigartina skottsbergii Setchell et Gardner, population in Chubut province (Argentina). Bot Mar 39:311–316CrossRefGoogle Scholar
  30. Piriz M, Cerezo A (1991) Seasonal variation of carrageenans in tetrasporic, cystocarpic and “sterile” stages of Gigartina skottsbergii S. et G. (Rhodophyta, Gigartinales). Hydrobiologia 226:65–69CrossRefGoogle Scholar
  31. Ramírez ME (1995) Seaweeds marinas bentónicas. In: Simonetti A, Arroyo M, Sportorno A, Lozada E (eds) Diversidad Biológica de Chile. Comité Nacional de Diversidad Biológica. Comisión Nacinal de Investigación Cientñifica y Tecnológica, Santiago ChileGoogle Scholar
  32. Ramírez ME, Santelices B (1991) Catálogo de las seaweeds marinas bentónicas de la Costa del Pacífico Temperado de Sudamérica. Monografías Biológicas 5. Pontificia Universidad Católica de Chile, Santiago, Chile, p 433Google Scholar
  33. Ríos C, Arntz WE, Gerdes D, Mutschke E, Montiel A (2007) Spatial and temporal variability of the benthic assemblages associated to the holdfasts of the kelp Macrocystis pyrifera in the Straits of Magellan, Chile. Polar Biol 31:89–100CrossRefGoogle Scholar
  34. Romo H, Avila M, Candía A (2001) Manual de técnicas de cultivo y repoblación de “Luga Roja” (Gigartina skottsbergii). Proyecto FONDEF D97I1064 y D00I1109. Universidad de Concepción – IFOP, Chile, p 32Google Scholar
  35. Romo H, Ávila M, Núñez M, Pérez R, Candia A, Aroca G (2006) Culture of Gigartina skottsbergii (Rhodophyta) in Southern Chile. A pilot scale approach. J Appl Phycol 18:307–314CrossRefGoogle Scholar
  36. Tasende MA, Fraga MI (1992) Efecto de las condiciones de cultivo en la germinación de esporas de Chondrus crispus Stackh (Gigartinales, Rhodophyta). Biol Mar 33:407–415Google Scholar
  37. Ugarte R, Santelices B (1992) Experimental tank cultivation of Gracilaria chilensis in central Chile. Acuaqulture 101:7–16CrossRefGoogle Scholar
  38. Van Deer Meer JP (1979) Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). V. Isolation and characterization of mutant strains. Phycologia 18:47–54CrossRefGoogle Scholar
  39. Van Der Meer JP, Bird NL (1977) Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). I. Mendelian inheritance of two spontaneous green variants. Phycologia 16:159–161CrossRefGoogle Scholar
  40. Vásquez JA (1993) Effects on the animal community of dislodgement of holdfasts of Macrocystis pyrifera. Pac Sci 47:180–184Google Scholar
  41. Werlinger C, Mansilla A, Villarroel A, Palacios M (2008) Effects of photon flux density and agricultural fertilizers on the development of Sarcothalia crispata tetraspores (Rhodophyta, Gigartinales) from the Strait of Magellan, Chile. J Appl Phycol 20:307–315CrossRefGoogle Scholar
  42. Westermeier R, Aguilar J, Sigel J, Quintanilla J, Morales J (1999) Biological basis for the management of Gigartina skottsbergii Setchell and Gardner (Rhodophyta, Gigartinales) in southern Chile. Hydrobiologia 398/399:137–147Google Scholar
  43. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice- Hall, Inc, New Jersey, p 663Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. Marambio
    • 1
  • A. Mansilla
    • 1
    • 3
  • M. Ávila
    • 2
  • S. Rosenfeld
    • 1
    • 3
  • J. Ojeda
    • 1
  1. 1.Laboratorio de Macroalgas Antárticas y SubantárticasUniversidad de MagallanesPunta ArenasChile
  2. 2.Universidad Arturo Prat (UNAP)Puerto MonttChile
  3. 3.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile

Personalised recommendations