Journal of Applied Phycology

, Volume 26, Issue 5, pp 1971–1977 | Cite as

Tolerance response of Lessonia flavicans from the sub-Antarctic ecoregion of Magallanes under controlled environmental conditions

  • Andrés Mansilla
  • Sebastián Rosenfeld
  • Javier Rendoll
  • Silvia Murcia
  • Camilo Werlinger
  • Nair S. Yokoya
  • Jorge Terrados
IV Latin American Congress of Algae Biotechnology (CLABA) and IV Redealgas Workshop


Environmental heterogeneity plays a key role in spatio-temporal distribution of organisms, their ecology and their evolutionary biology, with their physiological response, or tolerance to the environment defining their distributional range. The macroalgae of the sub-Antarctic ecoregion of Magallanes are subject to a wide range of environments, resulting from geomorphological processes (glacial erosion in the Quaternary), oceanographic gradients, and drastic seasonal variations of photoperiod and irradiance (winter <8 h of light, summer >17 h). We examined the tolerance response of the brown alga Lessonia flavicans to contrasting environments (three salinities, two temperatures, and two photoperiods) under controlled laboratory conditions. Our results suggest that L. flavicans has limited salinity tolerance that is affected by temperature and photoperiod. Summer temperature (9 °C ± 0.02) and photoperiod (18:6 h L:D) and salinity 32 psu seem optimal conditions for L. flavicans sporophyte development. Results of the present study provide key information for culturing a species of high economic and biological value, and could aid in predicting the species potential tolerance response to environmental fluctuations in the wake of global changes.


Phaeophyceae Environmental heterogeneity Photoperiod Salinity Temperature 



The authors thank the support and funding of CONICYT–Chile (Program FONDECYT 1110875) for the collection of samples and the materials for experiments. Author SR would like to thank the Scholarship provided by the Institute of Ecology and Biodiversity (; Chile) (code ICM P05-002) and The Master of Science Program in Conservations and Management of Natural Resources in Sub-Antarctic Ecosystems of the University of Magallanes ( Also the students of Magister program in Statistics at the University of Concepción, Mr. Geovanni Moreno, José Salcedo and Alex Pereira for their help in the statistical analysis of experimental data. Finally the author would like to thank the AM Millennium Scientific Initiative (grant no. P05-002 ICM, Chile) and the Basal Financing Program of the Comisión Nacional de Investigación Científica y Tecnológica (grant no. PFB-23, Chile).


  1. Astorga MS, Mansilla A (2013) Sub-Antarctic macroalgae: opportunities for gastronomic tourism and local fisheries in the Region of Magallanes and Chilean Antarctic Territory. J Appl Phycol 1–6Google Scholar
  2. Ávila M, Merino C, Guissen K, Piel MI (2010) Manual de cultivo de macroalgas pardas. Desde el Laboratorio al océano. Universidad Arturo Prat 33 pp.
  3. Ávila M, Hoffmann AJ, Santelices B (1985) Interacciones de temperatura, densidad de flujo fotónico y fotoperíodo sobre el desarrollo de etapas microscópicas de Lessonia nigrescens (Phaeophyta, Laminariales). Rev Chil Hist Nat 58:71–82Google Scholar
  4. Bozinovic F, Calosi P, Spicer JI (2011) Physiological correlates of geographic range in animals. Annu Rev Ecol Syst 42:155–179CrossRefGoogle Scholar
  5. Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgol Meeresunters 42:199–241CrossRefGoogle Scholar
  6. Buschmann AH, Vásquez JA, Osorio EP, Reyes E, Filun L, Hernández-González MC, Vega A (2004) The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitudes in Chile. Mar Biol 145:849–862CrossRefGoogle Scholar
  7. Chandía NP, Matsuhiro B (2008) Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int J Biol Macromol 42:235–240PubMedCrossRefGoogle Scholar
  8. Chandía NP, Matsuhiro B, Ortiz J, Mansilla A (2005) Carbohydrates from sequential extraction of Lessonia vadosa (Phaeophyta). J Chil Chem Soc 2:501–504Google Scholar
  9. Dean TA, Jacobsen FR (1984) Growth of juvenile Macrocystis pyrifera (Laminariales) in relation to environmental factors. Mar Biol 83:301–311CrossRefGoogle Scholar
  10. Dhargalkar VK (2004) Effect of different temperature regimes on the chlorophyll a concentration in four species of Antarctic macroalgae. Seaweed Res Utiln 26:237–243Google Scholar
  11. Fredersdorf J, Müller R, Becker S, Wiencke C, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492PubMedCrossRefGoogle Scholar
  12. Gaines SD, Lubchenco J (1982) A unified approach to marine plant herbivore interactions. II. Biogeography. Annu Rev Ecol Syst 13:111–138CrossRefGoogle Scholar
  13. Gómez I, Weykam G, Wiencke C (1998) Photosynthetic metabolism and major organic compounds in the marine brown alga Desmarestia menziesii from King George Island (Antarctica). Aquat Bot 60:105–118CrossRefGoogle Scholar
  14. Hay ME (1981) Herbivory, algal distribution and maintenance of between habitat diversity on a tropical fringing reef. Am Nat 118:520–540CrossRefGoogle Scholar
  15. Hoffmann AJ, Santelices B (1982) Effects of light intensity and nutrients on gametophytes and gametogenesis of Lessonia nigrescens Bory (Phaeophyta). J Exp Mar Biol Ecol 60:77–89CrossRefGoogle Scholar
  16. Hoffmann AJ, Avila M, Santelices B (1984) Interactions of nitrate and phosphate on the development of microscopic stages of Lessonia nigrescens Bory (Phaeophyta). J Exp Mar Biol Ecol 78:177–186CrossRefGoogle Scholar
  17. Kain J (1979) A view of the genus Laminaria. Oceanogr Mar Biol Annu Rev 17:101–161Google Scholar
  18. Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol Lett 12:334–350PubMedCrossRefGoogle Scholar
  19. Kilian R, Baeza O, Steinke T, Arevalo M, Rios C, Schneider C (2007) Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magellanes fjord system of Chile (53°S). Quat Int 161:90–107CrossRefGoogle Scholar
  20. Kirst G, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199CrossRefGoogle Scholar
  21. Little B, Gerchakov S, Udey L (1987) A method for sterilization of natural seawater. J Microbiol Methods 7:193–200CrossRefGoogle Scholar
  22. Lüning K (1980) Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol 16:l–15CrossRefGoogle Scholar
  23. Mansilla A, Palacios M, Aguilar S (2004) Efecto de la salinidad en el desarrollo en Sarcothalia crispata (Bory) Leister bajo condiciones de laboratorio. Ann Inst de la Pat Ser Cs Nat 32:13–33Google Scholar
  24. Mansilla A, Ávila M, Caceres J, Palacios M, Navarro N, Cañete I, Oyarzún S (2009) Diagnóstico bases biológicas explotación sustentable Macrocystis pyrifera, (Huiro), XII Región Código BIP N° 30060262-0. Gobierno Regional de Magallanes y Antártica Chilena. Informe de Proyecto, Universidad de Magallanes, Chile, 345ppGoogle Scholar
  25. Mansilla A, Ávila M, Yokoya NS (2012a) Current knowledge on biotechnological interesting seaweeds from the Magellan Region, Chile. Rev Bras Farmacogn 22:760–767CrossRefGoogle Scholar
  26. Mansilla A, Ojeda J, Rozzi R (2012b) Cambio climático global en el contexto de la Ecoregión subantártica de Magallanes y la reserva de biosfera Cabo de Hornos. Ann Inst de la Pat Ser Cs Nat 40:69–76Google Scholar
  27. Martin P, Zuccarello GC (2012) Molecular phylogeny and timing of radiation in Lessonia (Phaeophyceae, Laminariales). Phycol Res 60:276–287CrossRefGoogle Scholar
  28. Martınez EA (1999) Latitudinal differences in thermal tolerance among microscopic sporophytes of the kelp Lessonia nigrescens (Phaeophyta: Laminariales). Pac Sci 53:74–81Google Scholar
  29. Matson PG, Edwards MS (2007) Effects of ocean temperature on the southern range limits of two understory kelps, Pterygophora californica and Eisenia arborea, at multiple life-stages. Mar Biol 151:1941–1949CrossRefGoogle Scholar
  30. Miranda GEC, Yokoya NS, Fuji MT (2012) Effects of temperature, salinity and irradiance on carposporeling development of Hydropuntia caudata (Gracilariales, Rhodophyta). Rev Bras Farmacogn 22:818–824CrossRefGoogle Scholar
  31. Mohring MB, Kendrick GA, Wernberg T, Rule MJ, Vanderklift MA (2013) Environmental influences on kelp performance across the reproductive period: an ecological trade-off between gametophyte survival and growth? PLoS ONE 8(6):e65310PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ojeda J (2013) Dinámica estacional de macroalgas y moluscos intermareales y su relación con el conocimiento tradicional ecológico yagán, en canales subantárticos del Cabo de Hornos: una aproximación biocultural desde la filosofía ambiental de campo. Postgraduate Thesis, Universidad de Magallanes, Punta Arenas, Chile, 145 ppGoogle Scholar
  33. Oppliger LV, Correa JA, Engelen AH, Tellier F, Vieira V et al (2012) Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species. Plos One 7(6):e39289PubMedCrossRefPubMedCentralGoogle Scholar
  34. Peteiro C, Sánchez N (2012) Comparing salinity tolerance in early stages of the sporophytes of a non-indigenous kelp (Undaria pinnatifida) and a native kelp (Saccharina latissima). Russ J Mar Biol 38:197–200CrossRefGoogle Scholar
  35. Ramlov F, de Souza J, Farias A, Maraschin M, Horta PA, Yokoya NS (2012) Effects of temperature, salinity, irradiance, and nutrients on the development of carposporelings and tetrasporophytes in Gracilaria domingensis (Kütz.) Sonder ex Dickie (Rhodophyta, Gracilariales). Bot Mar 55:253–259CrossRefGoogle Scholar
  36. Ríos C, Arntz WE, Gerdes D, Mutschke E, Montiel A (2007) Spatial and temporal variability of the benthic assemblages associated to the holdfasts of the kelp Macrocystis pyrifera in the Straits of Magellan, Chile. Polar Biol 31:89–100CrossRefGoogle Scholar
  37. Rozzi R, Massardo F, Anderson CB, Heidinger K, Silander JA (2006) Ten principles for biocultural conservation of the southern tip of the Americas: the approach of the Omora Ethnobotanical Park. Ecol Soc 11:43Google Scholar
  38. Santana A, Olave C, Butorovic N (2010) Estudio climatológico con registros de alta resolución temporal en campamento posesión (ENAP) Magallanes, Chile. Ann Inst de la Pat 38:5–34Google Scholar
  39. Santelices B, Ojeda P (1984) Recruitment, growth and survival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Mar Ecol Prog Ser 14:165–173CrossRefGoogle Scholar
  40. Searles RB (1978) The genus Lessonia Bory (Phaeophyta, Laminariales) in Southern Chile and Argentina. Br Phycol J 13:361–381CrossRefGoogle Scholar
  41. Sexton JP, Mcintyre PJ, Angert AL, Rice RJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436CrossRefGoogle Scholar
  42. Silva N, Calvete C (2002) Características oceanográficas físicas y químicas de canales australes chilenos entre el golfo de penas y el Estrecho de Magallanes (Crucero CIMAR–FIORDOS 2). Cienc Tecnol Mar 25:23–88Google Scholar
  43. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459CrossRefGoogle Scholar
  44. Valdenegro C, Silva N (2003) Caracterización oceanográfica física y química de la zona de canales y fiordos australes de Chile entre el estrecho de Magallanes y Cabo de Hornos (Cimar 3 fiordos). Cienc Tecnol Mar 26:19–60Google Scholar
  45. van den Hoek C (1982) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:81–144CrossRefGoogle Scholar
  46. Vásquez JA, Santelices B (1984) Comunidades de macroinvertebrados en discos adhesivos de Lessonia nigrescens Bory (Phaeophyta) en Chile central. Rev Chil Hist Nat 57:131–154Google Scholar
  47. Villouta E, Santelices B (1984) Estructura de la comunidad submareal de Lessonia (Phaeophyta, Laminariales) en Chile norte y central. Rev Chil Hist Nat 57:111–122Google Scholar
  48. Wiencke C, Dieck IT (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and southern Chile. Mar Ecol Prog Ser 59:157–170CrossRefGoogle Scholar
  49. Yokoya NS, Kakita H, Obika H, Kitamura T (1999) Effects of environmental factors and plant growth regulators on growth of the red alga Gracilaria vermiculophylla from Shikoku Islands, Japan. Hydrobiologia 398/399:339–347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Andrés Mansilla
    • 1
    • 2
  • Sebastián Rosenfeld
    • 1
    • 2
  • Javier Rendoll
    • 1
  • Silvia Murcia
    • 1
  • Camilo Werlinger
    • 3
  • Nair S. Yokoya
    • 4
  • Jorge Terrados
    • 5
  1. 1.Laboratorio de Macroalgas Antárticas y SubantárticasUniversidad de MagallanesPunta ArenasChile
  2. 2.Instituto de Ecología y Biodiversidad (IEB)SantiagoChile
  3. 3.Departamento de OceanografíaUniversidad de ConcepciónConcepciónChile
  4. 4.Núcleo de Pesquisa em FicologiaInstituto de BotânicaSão PauloBrazil
  5. 5.Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB)MallorcaSpain

Personalised recommendations