Advertisement

Journal of Applied Phycology

, Volume 26, Issue 5, pp 2087–2095 | Cite as

Effect of different media on exopolysaccharide and biomass production by the green microalga Botryococcus braunii

  • Kenny C. Díaz Bayona
  • Lucía Atehortúa Garcés
Article

Abstract

Botryococcus braunii is a colonial green microalga with recognized potential to synthesize lipids and hydrocarbons for biofuel production. Besides this ability, this microalga also produces exopolysaccharides (EPS). Nevertheless, there are few reports about their biotechnological aspects and industrial applications. In this study, the effect of the nutritional conditions was examined by using two different culture media (BG11 and D medium). To our knowledge, the latter has not been reported before for culturing B. braunii. After 49 days of incubation, the final production of EPS was found to be statistically higher (P < 0.05) in the D medium (0.549 ± 0.044 g L−1) than in BG11 (0.336 ± 0.009 g L−1). On the contrary, the biomass production was found to be higher in BG11 (1.019 ± 0.051 g L−1) than in the D medium (0.953 ± 0.056 g L−1). However, this difference was not statistically significant. The difference in salinity and nitrogen concentration between both media is suggested as the main factor involved in the EPS and biomass results. FTIR spectra of B. braunii EPS from both media revealed presence of uronic acids and absence of amino and sulfate groups. Despite the similarity between both spectra, there were some different signals (at 1,921.52 and 720.60 cm−1) which may mean a difference in glycosyl composition.

Keywords

Microalgae Botryococcus braunii Culture media Biomass Exopolysaccharides FTIR 

Notes

Acknowledgments

This work was supported by Empresas Públicas de Medellín (EPM), the University of Antioquia and the Division of Sustainability of the Committee for Research Development of the Universidad de Antioquia – CODI. We thank HUMAX Pharmaceutical S.A (Itagüí, Colombia) and its members Jhonny Colorado and Alba Ceballos for their help with the FTIR analysis of the samples.

References

  1. Allard B, Casadevall E (1990) Carbohydrate composition and characterization of sugars from the green microalga Botryococcus braunii. Phytochemistry 29:1875–1878CrossRefGoogle Scholar
  2. Andersen RA (2005) Algal culturing techniques. Elsevier Academic Press, San DiegoGoogle Scholar
  3. Arad S, Friedman OD, Rotem A (1988) Effect of nitrogen on polysaccharide production in a Porphyridium sp. Appl Environ Microb 54:2411–2414Google Scholar
  4. Arad S, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotech 21:358–364PubMedCrossRefGoogle Scholar
  5. Arad S, Rapoport L, Moshkovich A, Van-Moppes D, Karpasas M, Golan R, Golan Y (2006) Superior biolubricant from a species of red microalga. Langmuir 22:7313–7317PubMedCrossRefGoogle Scholar
  6. Ashokkumar V, Rengasamy R (2011) Growth and lipid production of Botryococcus braunii Kutz. using different nitrogen sources under laboratory condition. Int J Cur Research 3:195–198Google Scholar
  7. Ashokkumar V, Rengasamy R (2012) Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresource Technol 104:394–399CrossRefGoogle Scholar
  8. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279PubMedCrossRefGoogle Scholar
  9. Buono S, Langellotti AL, Martello L, Bimonte M, Tito A, Carola A, Apone F, Colucci G, Fogliano V (2012) Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch Dermatol Res 304:755–764PubMedCrossRefGoogle Scholar
  10. Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonona AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146:60–78CrossRefGoogle Scholar
  11. Casadevall E, Dif D, Largeau C, Gudin C, Chamount D, Desanti O (1985) Studies on batch and continuous culture of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol Bioeng 27:286–295PubMedCrossRefGoogle Scholar
  12. Cerna M, Barros AS, Nunes A, Rocha SM, Delgadillo I, Copìkovà J, Coimbra MA (2003) Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydr Polym 51:383–389CrossRefGoogle Scholar
  13. Chisti Y (1980-81) An unusual hydrocarbon. J Ramsay Society 27-28:24–26Google Scholar
  14. Copíková J, Barros AS, Smidova I, Cerna M, Teixeira DH, Delgadillo I, Synystya A, Coimbra MA (2006) Influence of hydration of food additive polysaccharides on FT-IR spectra distinction. Carbohyd Polym 63:355–359CrossRefGoogle Scholar
  15. Criado MT, Ferreirós CM (1984) Toxicity of an algal mucopolysaccharide for Escherichia coli and Neisseria meningitidis strains. Rev Esp Fisiol 40:227–230PubMedGoogle Scholar
  16. Dayananda C, Sarada R, Bhattacharya S, Ravishankar GA (2005) Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem 40:3125–3131CrossRefGoogle Scholar
  17. Dayananda C, Sarada R, Usha Rani M, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenerg 31:87–93CrossRefGoogle Scholar
  18. Demura M, Ioki M, Kawachi M, Nakajima N, Watanabe MM (2013) Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells. J Appl Phycol. doi: 10.1007/s10811-013-0059-7 PubMedPubMedCentralGoogle Scholar
  19. Díaz KC, Navarro SM, Lara AD, Colorado J, Atehortúa L, Martínez A (2012) Activity of sulfated polysaccharides from microalgae Porphyridium cruentum over degenerative mechanisms of the skin. Int J Sci Adv Tech 2:85–92Google Scholar
  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  21. El-Anwar OM, El-Shouny W, Talat R, El-Zahaby H (2012) Polysaccharides production from some Pseudomonas syringae pathovars as affected by different types of culture media. J Microbiol Biotechnol Food Sci 1:1305–1318Google Scholar
  22. Fernandes HL, Lupi F, Tomé MM, Sá-Correia I, Novais JM (1991) Rheological behaviour of the culture medium during growth of the microalga Botryococcus braunii. Bioresource Technol 38:133–136CrossRefGoogle Scholar
  23. Filippov MP (1992) Practical infrared spectroscopy of pectic substances. Food Hydrocolloid 6:115–118CrossRefGoogle Scholar
  24. Fodil-Bourahla I, Bizbiz L, Schoevaert D, Robert AM, Robert L (2003) Effect of l-fucose and fucose-rich oligo- and polysaccharides (FROP-s) on skin aging: penetration, skin tissue production and fibrillogenesis. Biomed Pharmacother 57:209–215PubMedCrossRefGoogle Scholar
  25. Geresh S, Mamontov A, Weinstein J (2002) Sulfation of extracellular polysaccharides of red microalgae: preparation, characterization and properties. J Biochem Bioph Meth 50:179–187CrossRefGoogle Scholar
  26. Graber M, Morin A, Duchiron F, Monsan PF (1988) Microbial polysaccharides containing 6-deoxysugars. Enzyme Microb Tech 10:198–206CrossRefGoogle Scholar
  27. Griffiths MJ, Garcin C, Van Hille RP, Harrison ST (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J Microbiol Meth 85:119–123CrossRefGoogle Scholar
  28. Gudin C, Bernard A, Chaumont DT, Thepnier C, Hardy T (1984) Direct conversion of solar energy into organic chemicals. World Biotech Rep 1:541Google Scholar
  29. Held W, Peters M, Buhs C, Oelert HH, Reifenstahl G, Wagner F (1985) Production of hydrocarbon from biomass. Comm Eur Communities, Energy Biomass 744Google Scholar
  30. Iain CM (1989) Industrial polysaccharides. Pure Appl Chem 61:1315–1322Google Scholar
  31. Kaplan D, Christiaen D, Arad S (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53:2953–2956PubMedPubMedCentralGoogle Scholar
  32. Karbowiak T, Ferret E, Debeaufort F, Voilley A, Cayot C (2011) Investigation of water transfer across thin layer biopolymer films by infrared spectroscopy. J Membrane Sci 370:82–90CrossRefGoogle Scholar
  33. Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119CrossRefGoogle Scholar
  34. Lim JM, Joo JH, Kim HO, Kim HM, Kim SW, Hwang HJ, Yun JW (2005) Structural analysis and molecular characterization of exopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1. Carbohyd Polym 61:296–303CrossRefGoogle Scholar
  35. Lupi F, Fernandes HL, Sá-Correia I, Novais J (1991) Temperature profiles of cellular growth exopolysaccharides synthesis by Botryococcus baunii. J Phycol 3:35–42CrossRefGoogle Scholar
  36. Lupi F, Fernandes HL, Tomé M, Sá-Correia I, Novais J (1994) Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus baunii UC 58. Enzyme Microb Tech 16:546–550CrossRefGoogle Scholar
  37. Martel CM (2009) Nitrogen-deficient microalgae are rich in cell-surface mannose: potential implications for prey biorecognition by phagotrophic protozoa. Braz J Microbiol 40:86–89PubMedPubMedCentralCrossRefGoogle Scholar
  38. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232CrossRefGoogle Scholar
  39. Matsui MS, Muizzuddin N, Arad S, Marenus K (2003) Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotech 104:13–22CrossRefGoogle Scholar
  40. Molnar I, Lopez D, Wisecaver JH, Devarenne TP, Weiss TL, Pellegrini M, Hackett JD (2012) Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genomics 13:576PubMedPubMedCentralCrossRefGoogle Scholar
  41. Morris HJ, Martínez CE, Abdala RT, Cobas G (2000) Evidencias preliminares de la actividad inmunomoduladora de la fracción polisacárida de origen marino PC-1. Rev Cubana Oncol 16:171–176Google Scholar
  42. Nakayasu S, Soegima R, Yamaguchi K, Oda T (2009) Biological activities of fucose-containing polysaccharide ascophyllan isolated from the brown alga Ascophyllum nodosum. Biosci Biotech Bioch 73:961–964CrossRefGoogle Scholar
  43. Nejatzadeh-Barandozi F, Enferadi ST (2012) FT-IR study of the polysaccharides isolated from the skin juice, gel juice, and flower of Aloe vera tissues affected by fertilizer treatment. Org Med Chem Lett 2:33PubMedPubMedCentralCrossRefGoogle Scholar
  44. Nguyen RT, Harvey HR (2003) Preservation via macromolecular associations during Botryococcus braunii decay: proteins in the Pula Kerogen. Org Geochem 34:1391–1403CrossRefGoogle Scholar
  45. Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technol 97:1822–1827CrossRefGoogle Scholar
  46. Persin Z, Stana-Kleinschek K, Foster TJ, Van Dam JEG, Boeriu CG, Navard P (2011) Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohyd Polym 84:22–32CrossRefGoogle Scholar
  47. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biot 65:635–648CrossRefGoogle Scholar
  48. Ranga Rao A, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technol 98:560–564CrossRefGoogle Scholar
  49. Ranga Rao A, Ravishankar GA, Sarada R (2012) Cultivation of green alga Botryococcus braunii in raceway, circular ponds under outdoor conditions and its growth, hydrocarbon production. Bioresource Technol 123:528–533CrossRefGoogle Scholar
  50. Ranga Rao A, Sarada R, Baskaran V, Ravishankar GA (2006) Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. J Agr Food Chem 54:4593–4599CrossRefGoogle Scholar
  51. Ranga Rao A, Sarada R, Ravishankar GA (2010) Enhancement of carotenoids in green alga-Botryococcus braunii in various autotrophic media under stress conditions. Int J Biomed Pharmaceut Sci 5:87–92Google Scholar
  52. Robert L, Fodil-Bourahla I, Bizbiz L, Robert AM (2004) Effect of l-fucose and fucose-rich polysaccharides on elastin biosynthesis, in vivo and in vitro. Biomed Pharmacother 58:123–128PubMedCrossRefGoogle Scholar
  53. Sajna KV, Sukumaran RK, Gottumukkala LD, Jayamurthy H, Dhar KS, Pandey A (2013) Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. Int J Biol Macromol 59:84–89PubMedCrossRefGoogle Scholar
  54. Sakamoto K, Baba M, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Optimization of light for growth, photosynthesis, and hydrocarbon production by the colonial microalga Botryococcus braunii BOT-22. Bioresource Technol 110:474–479CrossRefGoogle Scholar
  55. Sawayama S, Minowa T, Yokoyama S (1999) Possibility of renewable energy production and carbon dioxide mitigation by thermochemical liquefaction of microalgae. Biomass Bioenerg 17:33–39CrossRefGoogle Scholar
  56. Sekkal M, Declerck C, Huvenne JP, Legrand P, Sombret B, Verdus MC (1993) Direct structural identification of polysaccharides from red algae by FTIR microspectrometry II: Identification of the constituents of Gracilaria verrucosa. Microchim Acta 112:11–18CrossRefGoogle Scholar
  57. Senousy HH, Beakes GW, Hack E (2004) Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40:412–423CrossRefGoogle Scholar
  58. Shiho M, Kawachi M, Horioka K, Nishita Y, Ohashi K, Kaya K, Watanabe MM (2012) Business evaluation of a green microalgae Botryococcus braunii oil production system. Proc Environ Sci 15:90–109CrossRefGoogle Scholar
  59. Sun KF, Hu Z, Duan SS (2010) Effects of nitrogen and phosphorus stress on the growth of Botryococcus braunii. Acta Hydrobiol Sinica 34:524–531Google Scholar
  60. Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microb 71:7327–7333CrossRefGoogle Scholar
  61. Tannin-Spitz T, Bergman M, Van-Moppes D, Shlomo G, Arad S (2005) Antioxidant activity of the polysaccharide of the red microalga Porphyridium sp. J Appl Phycol 17:215–222CrossRefGoogle Scholar
  62. Tanoi T, Kawachi M, Watanabe MM (2011) Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol 23:25–33CrossRefGoogle Scholar
  63. Tanoi T, Kawachi M, Watanabe MM (2013) Appearance of fibrillary exopolysaccharides secreted by Botryococcus braunii. Phycol Res in press.Google Scholar
  64. Vazquez R, Arredondo B (1991) Haloadaptation of the green alga Botryococcus braunii (race A). Phytochemistry 30:2919–2925CrossRefGoogle Scholar
  65. Wang B (2011) Chemical characterization and ameliorating effect of polysaccharide from Chinese jujube on intestine oxidative injury by ischemia and reperfusion. Int J Biol Macromol 48:386–391PubMedCrossRefGoogle Scholar
  66. Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (Race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440PubMedPubMedCentralCrossRefGoogle Scholar
  67. Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresource Technol 102:10047–10051CrossRefGoogle Scholar
  68. Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004) Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnol Lett 26:239–243PubMedCrossRefGoogle Scholar
  69. Yee N, Benning LG, Phoenix VR, Ferris FG (2004) Characterization of metal-cyanobacteria sorption reactions: a combined macroscopic and infrared spectroscopic investigation. Environ Sci Technol 38:775–782PubMedCrossRefGoogle Scholar
  70. Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technol 102:3034–3040CrossRefGoogle Scholar
  71. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae-based biorefinery—from biofuels to natural products. Bioresource Technol 135:166–174CrossRefGoogle Scholar
  72. Zhang K, Kojima E (1998) Effect of light intensity on colony size of microalga Botryococcus braunii in bubble column photobioreactors. J Ferment Bioeng 86:573–576CrossRefGoogle Scholar
  73. Zhila NO, Kalacheva GS, Volova TG (2005) Influence of nitrogen deficiency on biochemical composition of the green alga Botryococcus. J Appl Phycol 17:309–315CrossRefGoogle Scholar
  74. Zhila NO, Kalacheva GS, Volova TG (2011) Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol 23:47–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kenny C. Díaz Bayona
    • 1
  • Lucía Atehortúa Garcés
    • 1
  1. 1.Grupo de Biotecnología, Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de Antioquia UdeAMedellínColombia

Personalised recommendations