Skip to main content
Log in

Microsatellite markers for the palaeo-temperature indicator Pentapharsodinium dalei (Dinophyceae)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Pentapharsodinium dalei is a widely distributed cold-water dinoflagellate, which is used in palaeoecology as an indicator of relatively warmer conditions in polar and sub-polar regions. This species has been proposed to be one of the first indicators of global warming at high latitudes. We developed the first microsatellite markers for P. dalei to facilitate the study of spatial and temporal population genetic changes. Single cysts were isolated from surface sediments in Koljö Fjord, Sweden. After cyst germination, single vegetative cells were isolated for establishing monoclonal cultures. Six dinucleotide polymorphic microsatellite markers were developed as multiplex polymerase chain reactions and were genotyped in 32 strains. The number of alleles per locus varied between 4 and 12, and the estimated gene diversity varied from 0.588 to 0.891. The haploid state of the vegetative cells was confirmed. The six selected microsatellites will be useful to explore population dynamics in P. dalei from contemporary planktonic and revived benthic samples to enable, for example, detailed studies into the evolutionary consequences of anthropogenic and climate-driven habitat changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armour JA, Neumann R, Gobert S, Jeffreys AJ (1994) Isolation of human simple repeat loci by hybridization selection. Human Mol Gen 3:599–605

    Article  CAS  Google Scholar 

  • Dale B (1996) Dinoflagellate cyst ecology: modelling and geological applications. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. The American Association of Stratigraphic Palynologists Foundation, Salt Lake City, pp 1249–1276

    Google Scholar 

  • Dale B (2001) The sedimentary record of dinoflagellate cysts: looking back into the future of phytoplankton blooms. Sci Mar 65:257–272

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformat Online 1:47–50

    CAS  Google Scholar 

  • Gautschi B, Tenzer I, Müller JP, Schmid B (2000a) Isolation and characterization of microsatellite loci in the bearded vulture (Gypaetus barbatus) and cross-amplification in three Old World vulture species. Mol Ecol 9:2193–2195

    Article  PubMed  CAS  Google Scholar 

  • Gautschi B, Widmer A, Koella J (2000b) Isolation and characterization of microsatellite loci in the dice snake (Natrix tessellata). Mol Ecol 9:2191–2193

    PubMed  CAS  Google Scholar 

  • Hackett JD, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Harland R, Nordberg K, Filipsson HL (2004) A high-resolution dinoflagellate cyst record from latest Holocene sediments in Koljö Fjord, Sweden. Rev Palaeobot Palynol 128:119–141

    Article  Google Scholar 

  • Larsen NH, Moestrup Ø, Pedersen PM (1994) Catalogue 1994. Scandinavian Culture Centre for Algae & Protozoa. Department of Phycology. Botanical Institute. University of Copenhagen. http://www.sccap.dk/media/marine/1.asp

  • Lundholm N, Daugbjerg N, Moestrup Ø (2002) Phylogeny of the Bacillariaceae with emphasis on the genus Pseudo-nitzschia (Bacillariophyceae) based on partial LSU rDNA. Eur J Phycol 37:115–134

    Article  Google Scholar 

  • Lundholm N, Ribeiro S, Andersen TJ, Kock T, Godhe A, Ekelund F, Ellegaard M (2011) Buried alive—germination of up to a century-old marine protist resting stages. Phycologia 6:629–640

    Article  Google Scholar 

  • Masseret E, Grzebyk D, Nagai S, Genovesi B, Lasserre B, Laabir M, Collos Y, Vaquer A, Berrebi P (2009) Unexpected genetic diversity among and within populations of the toxic dinoflagellate Alexandrium catenella as revealed by nuclear microsatellite markers. Appl Environ Microbiol 75:2037–2045

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McQuoid MR, Godhe A, Nordberg K (2002) Viability of phytoplankton resting stages in the sediments of a coastal Swedish fjord. Eur J Phycol 37:1–11

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics, 1st edn. Columbia University, New York

    Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Penaud A, Eynaud F, Sanchez-Goñi M, Malaizé B, Turon JL, Rossignol L (2011) Contrasting sea-surface responses between the western Mediterranean Sea and eastern subtropical latitudes of the North Atlantic during abrupt climatic events of MIS 3. Mar Micropaleont 80:1–17

    Article  Google Scholar 

  • Pfiester LA, Anderson DM (1987) Dinoflagellate reproduction. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 611–648

    Google Scholar 

  • Ribeiro S, Moros M, Ellegaard M, Kuipers A (2011a) Climate variability in West Greenland during the past 1500 years: evidence from a high-resolution marine palynological record from Disko Bay. Boreas 41:68–83

    Article  Google Scholar 

  • Ribeiro S, Berge T, Lundholm N, Andersen TJ, Abrantes F, Ellegaard M (2011b) Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat Commun. doi:10.1038/ncomms1314

    PubMed Central  PubMed  Google Scholar 

  • Rochon A, Vernal A, Turon J, Matthießen J, Head M (1999) Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. Am Ass Stratigr Palynol Contrib Ser 35:1–146

    Google Scholar 

  • Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol Bull 204:10–20

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Spector DL (1984) Dinoflagellate nuclei. In: Spector DL (ed) Dinoflagellates. Academic, Orlando, pp 107–147

    Chapter  Google Scholar 

  • Sperisen C, Gugerli F, Bucher U, Mátyás G (2000) Comparison of two rapid DNA extraction protocols for gymnosperm for application in population genetic and phylogenetic studies. Forest Gen 7:133–136

    Google Scholar 

Download references

Acknowledgments

This study was part of the Danish Research Council project 2111-04-0011. SR holds a postdoctoral grant from the Carlsberg Foundation, Denmark (no. 2011_01_0337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Lundholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lundholm, N., Nielsen, L.R., Ribeiro, S. et al. Microsatellite markers for the palaeo-temperature indicator Pentapharsodinium dalei (Dinophyceae). J Appl Phycol 26, 417–420 (2014). https://doi.org/10.1007/s10811-013-0123-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0123-3

Keywords

Navigation