Journal of Applied Phycology

, Volume 26, Issue 1, pp 43–48 | Cite as

Evaluation of antioxidant capacities of green microalgae

  • Weena Choochote
  • Linchong Suklampoo
  • Duangjai Ochaikul


Three strains of green microalgae, Chlorococcum sp.C53, Chlorella sp. E53, and Chlorella sp.ED53 were studied for their antioxidant activities. Crude extracts of these microalgae in hot water and in ethanol were examined for their total phenolic contents and for their antioxidant capacities. In order to determine their phenolic contents, the Folin–Ciocalteu method was used. As for the determination of their antioxidant capacities, four different assays were used: (1) total antioxidant capacity determination; (2) DPPH radical scavenging assay; (3) ferrous ion chelating ability assay; and (4) inhibition of lipid peroxidation (using thiobarbituric acid reactive substance). For all the strains we have studied, their ethanolic extract showed more antioxidant activities than their hot water extract. Categorically, the ethanolic extract of Chlorella sp.E53 exhibited both the highest total phenolic content of 35.5 ± 0.14 mg gallic acid equivalent (GAE) g−1 dry weight and the highest DPPH radical scavenging of 68.18 ± 0.38 % at 1.4 mg mL−1 (IC50 0.81 mg mL−1), whereas Chlorella sp.ED53 showed both the highest ferrous ion chelation activity of 42.78 ± 1.48 % at 1 mg mL−1 (IC50 1.23 mg mL−1) and the highest inhibition of lipid peroxidation of 87.96 ± 0.59 % at 4 mg mL−1. This high level of inhibition is comparable to 94.42 ± 1.39 % of butylated hydroxytoluene, a commercial synthetic antioxidant, at the same concentration.


Microalgae Chlorella sp. Antioxidant activity Total phenolic contents DPPH scavenging assay 



This research was supported by the Faculty of Science, KMITL, Thailand.


  1. Abd El-Baky HH, El Baz FK, El Baroty GS (2008) Evaluation of marine algae Ulva lactuca L. as a source of natural preservative ingredient. Amer-Euras J Agric Environ Sci 3:434–444Google Scholar
  2. Apt KE, Behrens PW (1999) Review: commercial developments in microalgal biotechnology. J Phycol 35:215–226CrossRefGoogle Scholar
  3. Babu B, Wu JT (2008) Production of natural butylated hydroxytoluene as an antioxidant by freshwater phytoplankton. J Phycol 44:1447–1454CrossRefGoogle Scholar
  4. Balboa EM, Conde E, Moure A, Falque E, Dominquez H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138:1764–1785PubMedCrossRefGoogle Scholar
  5. Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ Texas Publ 6318:1–95Google Scholar
  6. Carballo-Cardenas EC, Tuan PM, Janssen M, Wiffels RH (2003) Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. Biomol Eng 20:139–147PubMedCrossRefGoogle Scholar
  7. Cha KH, Kang SW, Kim CY, Um BH, Na YR, Pan C-H (2010) Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agric Food Chem 58:4756–4761PubMedCrossRefGoogle Scholar
  8. Chew YL, Lim YY, Omar M, Khoo KS (2008) Antioxidant activity of three edible seaweeds from two areas in South East Asia. Food Sci Technol 41:1067–1072Google Scholar
  9. Del Campo JA, Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59PubMedCrossRefGoogle Scholar
  10. Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854PubMedCrossRefGoogle Scholar
  11. Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nanochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 272:717–722CrossRefGoogle Scholar
  12. Ganesan K, Kumar KS, Subba Rao PV (2011) Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innov Food Sci Emerg Technol 12:73–78CrossRefGoogle Scholar
  13. Ganesan P, Kumar CS, Bhaskar N (2008) Antioxidant properties of methanol extract and its solvent fraction obtained from selected Indian red seaweeds. Bioresour Technol 99:2717–2723PubMedCrossRefGoogle Scholar
  14. Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardosp MT, Palavra AF, Mendes RL (2007) Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem 101:717–723CrossRefGoogle Scholar
  15. Granado-Lorencio F, Herrero-Barbudo C, Acien-Fernandez G, Molina-Grima E, Fernandez-Sevilla JM, Perez-Sacristan B, Blanco-Navarro I (2009) In vitro bioaccesibility of lutein and zeaxanthin from the microalgae Scenedesmus almeriensis. Food Chem 114:747–752CrossRefGoogle Scholar
  16. Hajimahmoodi M, Faramarzi MA, Mohammadi N, Soltani N, Oveisi MR, Nafissi-Varcheh N (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50CrossRefGoogle Scholar
  17. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30:709–732PubMedCrossRefGoogle Scholar
  18. Herrero M, Jaime L, Martin-Alvarez PJ, Cifuentes A, Ibanez E (2006) Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J Agric Food Chem 54:5597–5603PubMedCrossRefGoogle Scholar
  19. Herrero M, Martin-Alvarez PJ, Senorans FJ, Cifuentes A, Ibanez E (2005) Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem 93:417–423CrossRefGoogle Scholar
  20. Hu Q, Pan B, Xu J, Sheng J, Shi Y (2007) Effect of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extract. J Food Eng 80:997–1001CrossRefGoogle Scholar
  21. Ismail HI, Chan KW, Mariod AA, Ismail M (2010) Phenolic content and antioxidant activity of cantaloupe (Cucumis melo) methanolic extracts. Food Chem 119:643–647CrossRefGoogle Scholar
  22. Jaime L, Rodriguez-Meizoso I, Cifuentes A, Santoyo S, Suarez S, Ibanez E, Senorans FJ (2010) Pressurized liquids as an alternative process to antioxidant carotenoids extraction from Haematococcus pluvialis microalgae. Food Sci Technol 43:105–112Google Scholar
  23. Jimenez-Escrig A, Jimenez- Jimenez I, Pulido R, Saura-Calixto F (2001) Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81:530–534CrossRefGoogle Scholar
  24. Kang CD, An JY, Park TH, Sim SJ (2006) Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem Eng J 31:234–238CrossRefGoogle Scholar
  25. Ko S-K, Kim D, Jeon Y-J (2012) Protective effect of a novel antioxidative peptide from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress. Food Chem Toxicol 50:2294–2302PubMedCrossRefGoogle Scholar
  26. Kuda T, Tsunekawa M, Hishi T, Araki Y (2005) Antioxidant properties of dried ‘kayamo-nori’, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem 89:617–622CrossRefGoogle Scholar
  27. Kumar KS, Ganesan K, Subba Rao PV (2008) Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. Food Chem 107:289–295CrossRefGoogle Scholar
  28. Leon R, Martin M, Vijara J, Vilchez C, Vega JM (2003) Microalgae mediated photoproduction of β-carotene in aqueous–organic two phase systems. Biomol Eng 20:177–182PubMedCrossRefGoogle Scholar
  29. Li H-B, Chen F (2001) Preparative isolation and purification of astaxanthin from the microalgae Chlorococcum sp. by high-speed counter-current chromatography. J Chromatogr A 952:133–137CrossRefGoogle Scholar
  30. Li H-B, Cheng K-W, Wong C-C, Fan K-W, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776CrossRefGoogle Scholar
  31. Li Z, Ma X, Li A, Zhang C (2012) A novel poteintial source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors. Bioresour Technol 117:257–263PubMedCrossRefGoogle Scholar
  32. Lopez A, Rico M, Rivero A, Tangil MS (2011) The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 125:1104–1109CrossRefGoogle Scholar
  33. Mendiola JA, Jaime L, Santoyo S, Reglero G, Cifuentes A, Ibanez E, Senorans FG (2007) Screening of function compounds in supercritical fluid extracts from Spirulina platensis. Food Chem 102:1357–1367CrossRefGoogle Scholar
  34. Manivannan K, Anantharaman P, Balasubramanian T (2012) Evaluation of antioxidant properties of marine microalga Chlorella marina (Butcher, 1952). Asian Pacific J Tropic Biomed S342–S346Google Scholar
  35. Pan Y, Zhu J, Wang H, Zhang X, Zhang Y, He C, Ji X, Li H (2007) Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem 103:913–918CrossRefGoogle Scholar
  36. Plaza M, Santoyo S, Jaime L, Avalo B, Cifuentes A, Reglero G, Reia GG-B, Senorans FG, Ibanez E (2012) Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. Food Sci Technol 46:245–253Google Scholar
  37. Plaza M, Santoyo S, Jaime L, Reina GG-B, Herrero M, Señoráns FG, Ibáñez E (2010) Screening for bioactive compounds from algae. J Pharm Biomed Anal 51:450–455PubMedCrossRefGoogle Scholar
  38. Samaranayaka AGP, Li-Chan ECY (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J Funct Foods 3:229–254CrossRefGoogle Scholar
  39. Vonshak A (1986) Laboratory techniques for the cultivation of microalgae. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, FL, pp 117–145Google Scholar
  40. Wang T, Jonsdottir R, Olafsdottir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116:240–248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Weena Choochote
    • 1
  • Linchong Suklampoo
    • 1
  • Duangjai Ochaikul
    • 1
  1. 1.Department of Biology, Faculty of ScienceKing Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations