Journal of Applied Phycology

, Volume 26, Issue 1, pp 15–23 | Cite as

A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria

  • Veerle M. Luimstra
  • Sophie-Jean Kennedy
  • Johanna Güttler
  • Susanna A. Wood
  • David E. Williams
  • Michael A. Packer


This work describes the development of an easily constructed, cost-effective photosynthetic microbial fuel cell design with highly reproducible electrochemical characteristics that can be used to screen algae and cyanobacteria for photosynthetic electrogenic activity. It is especially suitable for benthic varieties, those that attach to surfaces. The anode chamber of the cell uses disposable polystyrene sample bottles (pottles) with a simple-to-apply carbon coating. These chambers can be used to grow photosynthetic microorganisms without a cathode for electrochemical characterization or with a cathode and load applied to provide electrogenic selective pressure. The utility of the design for screening, isolating and analysing photosynthetic electrogenic microorganisms under a wide variety of conditions is demonstrated. Several genera of benthic cyanobacteria from both New Zealand and Antarctica were shown to be electrogenic including Pseudanabaena, Leptolyngbya, Chroocococales, Phormidesmis, Microcoleus, Nostoc and Phormidium. A benthic strain of the eukaryote Paulschulzia pseudovolvox (Chlorophyceae) was isolated and identified, which had very good electrogenic qualities.


Photosynthetic microbial fuel cell Electrogenic microorganism Benthic cyanobacteria Disposable pottle Benthic Paulschulzia pseudovolvox 



We thank Veronica Beuzenberg (Cawthron) for technical assistance and comments on the manuscript, Dr. Kirsty Smith (Cawthron) for help with phylogeny, the Cawthron Institute phytoplankton group for phytoplankton identifications and the New Zealand Ministry of Business, Innovation and Employment grant LVL0802 “Direct Electron Transfer Biotechnologies” for funding.

Supplementary material

10811_2013_51_MOESM1_ESM.doc (36 kb)
ESM 1 (DOC 35 kb)
10811_2013_51_Fig5_ESM.jpg (39 kb)
Supplementary Figure 1

Photomicrograph of Paulschulzia pseudovolvox. Scale bar = 20 μm (JPEG 38 kb)

10811_2013_51_MOESM2_ESM.tif (1.5 mb)
High resolution image (TIFF 1541 kb)


  1. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucl Acids Res 36:D25–D30PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bolch CJS, Blackburn SI (1996) Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa. J Appl Phycol 8:5–13CrossRefGoogle Scholar
  3. Broady PA, Flint EA, Nelson WA, Cassie Coope V, De Winton MD, Novis PM (2012) Phylum Chlorophyta and Charophyte: green algae. In D.P. Gordon (ed) New Zealand inventory of biodiversity. Volume Three. Kingdoms Bacteria, Protozoa, Chromista, Plantae, Fungi. Canterbury University Press, Christchurch, pp. 347–381Google Scholar
  4. Catal T, Li K, Bermek H, Liu H (2008a) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175:196–200CrossRefGoogle Scholar
  5. Catal T, Xu ST, Li KC, Bermek H, Liu H (2008b) Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens Bioelectr 24:849–854CrossRefGoogle Scholar
  6. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232PubMedCrossRefGoogle Scholar
  7. Cho YK, Donohue TJ, Tejedor MA, Anderson MA, McMahon KD, Nogeura DR (2007) Development of a solar-powered microbial fuel cell. J Appl Microbiol 104:640–650PubMedCrossRefGoogle Scholar
  8. Esson D, Wood SA, Packer MA (2011) Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors. AMB Express 1:19–26PubMedCentralPubMedCrossRefGoogle Scholar
  9. Fu CC, Hung TC, Wu WT, Wen TC, Su CH (2010) Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochem Eng J 52:175–180CrossRefGoogle Scholar
  10. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363PubMedCentralPubMedCrossRefGoogle Scholar
  11. Guiry MD, Guiry GM (2013) AlgaeBase. World-wide electronic publication. National University of Ireland. Accessed 15 Jan 2013
  12. Heath MW, Wood SA, Ryan KG (2010) Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand. FEMS Microbiol Ecol 73:95–109PubMedGoogle Scholar
  13. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Env Sci Tech 40:5181–5192CrossRefGoogle Scholar
  14. Logan BE, Regan JM (2006) Microbial fuel cells—challenges and applications. Env Sci Tech 40:5172–5180CrossRefGoogle Scholar
  15. Martineau E, Wood SA, Miller MR, Jungblut AD, Hawes I, Webster-Brown J, Packer MA (2013) Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia 711:139–154.CrossRefGoogle Scholar
  16. Menicucci J, Beyenal H, Marsili E, Veluchamy RA, Demir G, Lewandowski Z (2006) Procedure for determining maximum sustainable power generated by microbial fuel cells. Env Sci Tech 40:1062–1068CrossRefGoogle Scholar
  17. Nunn GB, Theisen BF, Christensen B, Arctander P (1996) Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J Mol Evol 42:211–223PubMedCrossRefGoogle Scholar
  18. Pisciotta JM, Zou YJ, Baskakov IV (2010) Light-dependent electrogenic activity of cyanobacteria. PLoS One 5:1–10CrossRefGoogle Scholar
  19. Pisciotta JM, Zou YJ, Baskakov IV (2011) Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria. Appl Microbiol Biotechnol 91:377–385PubMedCrossRefGoogle Scholar
  20. Potter MC (1910) On the difference of potential due to the vital activity of microorganisms. Proc Univ Durham Phil Soc 3:245–249Google Scholar
  21. Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Env Sci Tech 39:3401–3408CrossRefGoogle Scholar
  22. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101PubMedCrossRefGoogle Scholar
  23. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment-water interface. Env Sci Tech 35:192–195CrossRefGoogle Scholar
  24. Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21:259–264PubMedCrossRefGoogle Scholar
  25. Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae) II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30:999–1011CrossRefGoogle Scholar
  26. Skuja A (1948) Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsalienses 9:1–399Google Scholar
  27. Sund CJ, McMasters S, Crittenden SR, Harrell LE, Sumner JJ (2007) Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Appl Micro Biotech 76:561–568CrossRefGoogle Scholar
  28. Tanaka K, Tamamushi R, Ogawa T (1985) Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J Chem Technol Biotechnol 35B:191–197CrossRefGoogle Scholar
  29. Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103:1068–1076PubMedCrossRefGoogle Scholar
  30. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106:528–536PubMedCrossRefGoogle Scholar
  31. Watson VJ, Logan BE (2011) Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochem Comm 13:54–56CrossRefGoogle Scholar
  32. Wood SA, Heath MW, Holland PT, Munday R, McGregor GB, Ryan KG (2010) Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 55:897–903PubMedCrossRefGoogle Scholar
  33. Wrighton KC, Coates JD (2009) Microbial fuel cells: plug-in and power-on microbiology. Microbe 4:281–287Google Scholar
  34. Xie X-H, Li EL, Kang Tang ZK (2010) Mediator toxicity and dual effect of glucose on the lifespan for current generation by cyanobacterium Synechocystis PCC 6714 based photoelectrochemical cells. J Chem Technol Biotechnol 86:109–114CrossRefGoogle Scholar
  35. Yagishita T, Sawayama S, Tsukahara KI, Ogi T (1998) Performance of photosynthetic electrochemical cells using immobilized Anabaena variabilis M-3 in discharge⁄culture cycles. J Ferment Bioeng 85:546–549CrossRefGoogle Scholar
  36. Zou Y, Pisciotta J, Billmyre RB, Baskakov IV (2009) Photosynthetic microbial fuel cells with positive light response. Biotechnol Bioeng 104:939–946PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Veerle M. Luimstra
    • 1
    • 2
  • Sophie-Jean Kennedy
    • 1
  • Johanna Güttler
    • 1
  • Susanna A. Wood
    • 1
    • 3
  • David E. Williams
    • 4
  • Michael A. Packer
    • 1
  1. 1.Cawthron InstituteNelsonNew Zealand
  2. 2.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Biological SciencesUniversity of WaikatoHamiltonNew Zealand
  4. 4.The School of Chemical SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations