Journal of Applied Phycology

, Volume 25, Issue 6, pp 1933–1937 | Cite as

Efficiency of copper removal by Sargassum sinicola in batch and continuous systems

  • Mónica Patrón-Prado
  • Pablo Lodeiro
  • Daniel B. Lluch-Cota
  • Elisa Serviere-Zaragoza
  • Margarita Casas-Valdez
  • Tania Zenteno-Savín
  • Lía Méndez-Rodríguez


The efficiency of batch and continuous systems of copper removal by Sargassum sinicola was studied. The effects of flow rate, initial metal concentration, and bed density on the capacity of the continuous system were also recorded. In batch systems, the maximum biosorption capacity was calculated as 49.63 ± 0.88 mg g−1; in the continuous system, under the following conditions: flow rate of 10 mL min−1, initial solution of 200 mg Cu L−1, bed density of 150 g L−1, and higher copper removal of 62.39 ± 1.91 mg g−1 was achieved. The Thomas model can be used to predict the breakthrough curves, but it underestimated breakthrough time.


Batch Continuous Copper Removal Sargassum 



We thank Baudilio Acosta, Alejandra Mazariegos, Orlando Lugo, and Claudia Pérez of CIBNOR for technical assistance. Ira Fogel of CIBNOR provided editorial services. Funding was provided by Centro de Investigaciones Biológicas del Noroeste (CIBNOR grants PC0.05 and EP 3) and CONACYT grant 179327. M.P.P. was a recipient of a CONACYT doctoral fellowship. M. Casas-Valdez is a COFAA-IPN and EDI-IPN fellow. P. Lodeiro acknowledges financial support from the Ángeles Alvariño project AA 10.02.56B.444.0 from Xunta de Galicia and co-funded by the European Social Fund.


  1. Aksu Z, Gönen F, Demircan Z (2002) Biosorption of chromium(VI) ions by Mowital® B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Process Biochem 38:175–186CrossRefGoogle Scholar
  2. Casas-Valdez M (2009) El alga marina Sargassum (Sargassaceae) en el desarrollo regional. In: Urciaga-García J, Lluch-Belda D, Beltrán-Morales LF (eds) Recursos marinos y servicios ambientales en el desarrollo regional. CIBNOR, La Paz, pp 139–156Google Scholar
  3. Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surfaces B 46:101–107CrossRefGoogle Scholar
  4. Chu KH (2004) Improved fixed bed models for metal biosorption. Chem Eng J 97:233–239CrossRefGoogle Scholar
  5. Da Silva EA, Cossich ES, Tavares CRG, Filho LC, Guirardello R (2002) Modeling of copper(II) biosorption by marine alga Sargassum sp. in fixed-bed column. Process Biochem 38:791–799CrossRefGoogle Scholar
  6. Davis TA, Volesky B, Vieira R (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278CrossRefGoogle Scholar
  7. Dupont L, Bouanda J, Dumonceau J, Aplincourt M (2005) Biosorption of Cu(II) and Zn(II) onto a lignocellulosic substrate extracted from wheat bran. Environ Chem Lett 2:165–168CrossRefGoogle Scholar
  8. Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelia by-products: mechanisms and influence of pH. Appl Microbiol Biotechn 37:399–403CrossRefGoogle Scholar
  9. Godjevargova T, Mihova S, Gabrovska K (2004) Fixed-bed biosorption of Cu2+ by polyacrylonitrile-immobilized dead cells of Saccharomyces cerevisiae. World J Microbiol Biotechnol 20:273–279CrossRefGoogle Scholar
  10. Halim HNA, Liew KKM (2011) Adsorption of basic red 46 by granular activated carbon in a fixed-bed column. IPCBEE 12:263–267Google Scholar
  11. Herrero R, Lodeiro P, García-Casal LJ, Vilariño T, Rey-Castro C, Calin D, Rodríguez P (2011) Full description of copper uptake by algal biomass combining and equilibrium NICA model with a kinetic intraparticule diffusion driving force aproach. Bioresour Technol 102:2990–2997PubMedCrossRefGoogle Scholar
  12. Kadirvelu K, Goel J (2007) Eco-friendly technologies for removal of hazardous heavy metal from water and industrial wastewater. In: Lewinsky AA (ed) Hazardous materials and wastewater. Nova Science Publishers, New York, pp 127–148Google Scholar
  13. Kratochvil D, Fourest E, Volesky B (1995) Biosorption of copper by Sargassum fluitans biomass in fixed-bed column. Biotechnol Lett 17:777–782CrossRefGoogle Scholar
  14. Langmuir I (1918) Adsorption of gases on plane surfaces of glass, mica, platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  15. Mukhopadhyay M, Noronha SB, Suraishkumar GK (2008) Role of surface properties during biosorption of copper by pretreated Aspergillus niger biomass. Colloids Surf A 329:95–99CrossRefGoogle Scholar
  16. Oztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Strptomyces coelicolor A3(2). Colloids Surf B 34:105–111CrossRefGoogle Scholar
  17. Patrón-Prado M, Acosta-Vargas B, Serviere-Zaragoza E, Méndez-Rodríguez LC (2010) Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water Air Soil Pollut 210:197–202CrossRefGoogle Scholar
  18. Pradhan S, Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis. J Microbiol Biotechnol 16:579–584CrossRefGoogle Scholar
  19. Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of marine algae. Bioresour Technnol 98:3344–3353CrossRefGoogle Scholar
  20. Sivaprakash B, Rajamohan N, Mohamed-Sadhik A (2010) Batch and column sorption of heavy metal from aqueous solution using a marine alga Sargassum tenerrimum. Int J Chem Tech Res 2:155–162Google Scholar
  21. Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666CrossRefGoogle Scholar
  22. Tsekova K, Petrov G (2002) Removal of heavy metals from aqueous solution using Rhizopus delemar mycelia in free and polyurethane-bound form. Z Naturforsch 57:629–633Google Scholar
  23. Veit MT, Da Silva EA, Tavares CRG, Fagundes-Klen MR, Goncalves CG, Seolato AA, Vaz LGL (2009) Biosorption of nickel(II) ions by using chemically pre-treated Sargassum filipendula biomass in a fixed bed column. World J Microbiol Biotechnol 25:1849–1856CrossRefGoogle Scholar
  24. Vieira R, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24PubMedGoogle Scholar
  25. Vijayaraghavan K, Prabu D (2006) Potential of Sargassum wigthii biomass for copper(II) removal from aqueous solutions: application of different mathematical models to batch and continuous biosorption data. J Hazard Mat B 137:558–564CrossRefGoogle Scholar
  26. Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216CrossRefGoogle Scholar
  27. Volesky B, Weber J, Park JM (2003) Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res 37:297–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mónica Patrón-Prado
    • 1
  • Pablo Lodeiro
    • 2
  • Daniel B. Lluch-Cota
    • 1
  • Elisa Serviere-Zaragoza
    • 1
  • Margarita Casas-Valdez
    • 3
  • Tania Zenteno-Savín
    • 1
  • Lía Méndez-Rodríguez
    • 1
  1. 1.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  2. 2.Departamento de Química Física e Ingeniería Química IUniversidad de A CoruñaCoruñaSpain
  3. 3.Centro Interdisciplinario de Ciencias Marinas-IPN (CICIMAR-IPN)La PazMexico

Personalised recommendations