Skip to main content
Log in

Efficiency of copper removal by Sargassum sinicola in batch and continuous systems

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The efficiency of batch and continuous systems of copper removal by Sargassum sinicola was studied. The effects of flow rate, initial metal concentration, and bed density on the capacity of the continuous system were also recorded. In batch systems, the maximum biosorption capacity was calculated as 49.63 ± 0.88 mg g−1; in the continuous system, under the following conditions: flow rate of 10 mL min−1, initial solution of 200 mg Cu L−1, bed density of 150 g L−1, and higher copper removal of 62.39 ± 1.91 mg g−1 was achieved. The Thomas model can be used to predict the breakthrough curves, but it underestimated breakthrough time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aksu Z, Gönen F, Demircan Z (2002) Biosorption of chromium(VI) ions by Mowital® B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Process Biochem 38:175–186

    Article  CAS  Google Scholar 

  • Casas-Valdez M (2009) El alga marina Sargassum (Sargassaceae) en el desarrollo regional. In: Urciaga-García J, Lluch-Belda D, Beltrán-Morales LF (eds) Recursos marinos y servicios ambientales en el desarrollo regional. CIBNOR, La Paz, pp 139–156

    Google Scholar 

  • Chen XC, Wang YP, Lin Q, Shi JY, Wu WX, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surfaces B 46:101–107

    Article  CAS  Google Scholar 

  • Chu KH (2004) Improved fixed bed models for metal biosorption. Chem Eng J 97:233–239

    Article  CAS  Google Scholar 

  • Da Silva EA, Cossich ES, Tavares CRG, Filho LC, Guirardello R (2002) Modeling of copper(II) biosorption by marine alga Sargassum sp. in fixed-bed column. Process Biochem 38:791–799

    Article  Google Scholar 

  • Davis TA, Volesky B, Vieira R (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278

    Article  CAS  Google Scholar 

  • Dupont L, Bouanda J, Dumonceau J, Aplincourt M (2005) Biosorption of Cu(II) and Zn(II) onto a lignocellulosic substrate extracted from wheat bran. Environ Chem Lett 2:165–168

    Article  CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelia by-products: mechanisms and influence of pH. Appl Microbiol Biotechn 37:399–403

    Article  CAS  Google Scholar 

  • Godjevargova T, Mihova S, Gabrovska K (2004) Fixed-bed biosorption of Cu2+ by polyacrylonitrile-immobilized dead cells of Saccharomyces cerevisiae. World J Microbiol Biotechnol 20:273–279

    Article  CAS  Google Scholar 

  • Halim HNA, Liew KKM (2011) Adsorption of basic red 46 by granular activated carbon in a fixed-bed column. IPCBEE 12:263–267

    Google Scholar 

  • Herrero R, Lodeiro P, García-Casal LJ, Vilariño T, Rey-Castro C, Calin D, Rodríguez P (2011) Full description of copper uptake by algal biomass combining and equilibrium NICA model with a kinetic intraparticule diffusion driving force aproach. Bioresour Technol 102:2990–2997

    Article  PubMed  CAS  Google Scholar 

  • Kadirvelu K, Goel J (2007) Eco-friendly technologies for removal of hazardous heavy metal from water and industrial wastewater. In: Lewinsky AA (ed) Hazardous materials and wastewater. Nova Science Publishers, New York, pp 127–148

    Google Scholar 

  • Kratochvil D, Fourest E, Volesky B (1995) Biosorption of copper by Sargassum fluitans biomass in fixed-bed column. Biotechnol Lett 17:777–782

    Article  CAS  Google Scholar 

  • Langmuir I (1918) Adsorption of gases on plane surfaces of glass, mica, platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Noronha SB, Suraishkumar GK (2008) Role of surface properties during biosorption of copper by pretreated Aspergillus niger biomass. Colloids Surf A 329:95–99

    Article  CAS  Google Scholar 

  • Oztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Strptomyces coelicolor A3(2). Colloids Surf B 34:105–111

    Article  Google Scholar 

  • Patrón-Prado M, Acosta-Vargas B, Serviere-Zaragoza E, Méndez-Rodríguez LC (2010) Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water Air Soil Pollut 210:197–202

    Article  Google Scholar 

  • Pradhan S, Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis. J Microbiol Biotechnol 16:579–584

    Article  CAS  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of marine algae. Bioresour Technnol 98:3344–3353

    Article  CAS  Google Scholar 

  • Sivaprakash B, Rajamohan N, Mohamed-Sadhik A (2010) Batch and column sorption of heavy metal from aqueous solution using a marine alga Sargassum tenerrimum. Int J Chem Tech Res 2:155–162

    CAS  Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666

    Article  CAS  Google Scholar 

  • Tsekova K, Petrov G (2002) Removal of heavy metals from aqueous solution using Rhizopus delemar mycelia in free and polyurethane-bound form. Z Naturforsch 57:629–633

    CAS  Google Scholar 

  • Veit MT, Da Silva EA, Tavares CRG, Fagundes-Klen MR, Goncalves CG, Seolato AA, Vaz LGL (2009) Biosorption of nickel(II) ions by using chemically pre-treated Sargassum filipendula biomass in a fixed bed column. World J Microbiol Biotechnol 25:1849–1856

    Article  CAS  Google Scholar 

  • Vieira R, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    PubMed  CAS  Google Scholar 

  • Vijayaraghavan K, Prabu D (2006) Potential of Sargassum wigthii biomass for copper(II) removal from aqueous solutions: application of different mathematical models to batch and continuous biosorption data. J Hazard Mat B 137:558–564

    Article  CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Volesky B, Weber J, Park JM (2003) Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res 37:297–306

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Baudilio Acosta, Alejandra Mazariegos, Orlando Lugo, and Claudia Pérez of CIBNOR for technical assistance. Ira Fogel of CIBNOR provided editorial services. Funding was provided by Centro de Investigaciones Biológicas del Noroeste (CIBNOR grants PC0.05 and EP 3) and CONACYT grant 179327. M.P.P. was a recipient of a CONACYT doctoral fellowship. M. Casas-Valdez is a COFAA-IPN and EDI-IPN fellow. P. Lodeiro acknowledges financial support from the Ángeles Alvariño project AA 10.02.56B.444.0 from Xunta de Galicia and co-funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lía Méndez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patrón-Prado, M., Lodeiro, P., Lluch-Cota, D.B. et al. Efficiency of copper removal by Sargassum sinicola in batch and continuous systems. J Appl Phycol 25, 1933–1937 (2013). https://doi.org/10.1007/s10811-013-0031-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0031-6

Keywords

Navigation