Advertisement

Journal of Applied Phycology

, Volume 25, Issue 6, pp 1881–1886 | Cite as

Effects of temperature and irradiance on filament development of Grateloupia turuturu (Halymeniaceae, Rhodophyta)

  • Xiaojiao Wei
  • Limei Shuai
  • Bojun Lu
  • Shasha Wang
  • Jia Chen
  • Gaoge Wang
Article

Abstract

Grateloupia turuturu Yamada is an economically valuable red alga with great potential in nutraceuticals and pharmaceuticals. Filaments of G. turuturu are of primary importance in germplasm preservation and sporeling culture, although filaments were not present in its life cycle. In this study, effects of temperature (10, 15, 20, 25, and 30 °C) and irradiance (10, 30, 60, and 90 μmol photons m−2 s−1) with photoperiod 10:14 h (light/dark) on filament development were investigated. Our results indicated that 25 °C was the optimal temperature for the formation of discoid crusts regardless of the irradiance. Conditions of 20 °C and 60 μmol photons m−2 s−1 promoted the development of discoid crusts and formation of upright thalli.

Keywords

Crust Development Filament Grateloupia turuturu Irradiance Temperature 

Notes

Acknowledgments

This study was sponsored by the Natural Science Foundation of Shandong Province, China (no. Y2007D42); the Science and Technology Development Project of Qingdao, China, 12-1-4-1-(4)-jch; the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, (2010) 1561; and the Student Research Training Program of Ocean University of China (no. 201210423048).

References

  1. Aguirre-Lipperheide M, Estrada-Rodriguez FJ, Evans LV (1995) Facts, problems and needs in seaweed tissue culture: an appraisal. J Phycol 31:677–688CrossRefGoogle Scholar
  2. Barreiro R, Quintela M, Bárbara I, Cremades J (2006) RAPD differentiation of Grateloupia lanceola and the invasive Grateloupia turuturu (Gigartinales, Rhodophyta) in the Iberian Peninsula. Phycologia 45:213–217CrossRefGoogle Scholar
  3. Cabioch J, Castric-Fey A, L’Hardy-Halos MT, Rio A (1997) Grateloupia doryphora et Grateloupia filicina var. luxurians (Rhodophyta, Halymeniaceae) sur les côtes de Bretagne (France). Cryptogamie Algol 18:117–137Google Scholar
  4. Chen YC, Chiang YM (1994) Development of protoplasts from Grateloupia sparsa and Grateloupia filicina (Halymeniaceae, Rhodophyta). Bot Mar 37:361–366CrossRefGoogle Scholar
  5. Chen YC, Chiang YM (1995) Ultrastructure of cell wall regeneration from isolated protoplasts of Grateloupia sparsa (Halymeniaceae, Rhodophyta). Bot Mar 38:393–399Google Scholar
  6. Dawes CJ, Koch EW (1991) Branch micropropagule and tissue culture of the red algae Eucheuma denticulatum and Kappaphycus alvarezii farmed in the Philippines. J Appl Phycol 3:247–257CrossRefGoogle Scholar
  7. D’Archino R, Nelson WA, Zuccarello GC (2007) Invasive marine red alga introduced to New Zealand waters: first record of Grateloupia turuturu (Halymeniaceae, Rhodophyta). NZ J Mar Freshw Res 41:35–42CrossRefGoogle Scholar
  8. Denis C, Massé A, Fleurence J, Jaouen P (2009) Concentration and pre-purification with ultrafiltration of a R-phycoerythrin solution extracted from macro-algae Grateloupia turuturu: process definition and up-scaling. Sep Purif Technol 69:37–42CrossRefGoogle Scholar
  9. Denis C, Morancais M, Li M, Deniaud E, Gaudin P, Wielgosz-Collin G, Barnathan G, Jaouen P, Fleurence J (2010) Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 119:913–917CrossRefGoogle Scholar
  10. Farnham WF (1980) Studies on aliens in the marine flora of southern England. In: Price JH, Irvine DEG, Farnham WF (eds) The shore environment 2: Ecosystems. Academic, London, pp 875–914Google Scholar
  11. Fu CH, Yan XH, Huang LB, Li L (2011a) The releasing and high-temperature resistance of conchospores from an improved strain in Porphyra yezoensis Ueda (Bangiales, Rhodophyta). Oceanol Limnol Sinica 42:460–466 (in Chinese with English abstract)Google Scholar
  12. Fujiwara-Arasaki T, Mino N, Kuroda M (1984) The protein value in human nutrition of edible marine algae in Japan. Hydrobiologia 116/117:513–516CrossRefGoogle Scholar
  13. Fu XT, Qin ZH, Xu JC, Gao X, Fang YC (2011b) Analysis and evaluation of nutritional quality of Grateloupia turuturu. Acta Nutrimenta Sinica 33:199–203 (in Chinese)Google Scholar
  14. Gavio B, Fredericq S (2002) Grateloupia turuturu (Halymeniaceae, Rhodophyta) is the correct name of the non-native species in the Atlantic known as Grateloupia doryphora. Eur J Phycol 37:349–359CrossRefGoogle Scholar
  15. Harlin MM, Villalard-Bohnsack M (2001) Seasonal dynamics and recruitment strategies of the invasive seaweed Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Narragansett Bay and Rhode Island Sound, Rhode Island, USA. Phycologia 40:468–474CrossRefGoogle Scholar
  16. Hellio C, Simon-Colin C, Clare A, Deslandes E (2004) Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae. Biofouling 20:139–145PubMedCrossRefGoogle Scholar
  17. Huang W, Fujita Y, Ninomiya M, Ohno M (1999) Seed production and cultivation of Grateloupia turuturu (Cryptonemiales, Rhodophyta) by callus culture. Bull Marine Sci Fish 19:1–7Google Scholar
  18. Iima M, Kinoshita T, Kawaguchi S, Migita S (1995) Cultivation of Grateloupia acuminata (Halymeniaceae, Rhodophyta) by regeneration from cut fragments of basal crusts and upright thalli. J Appl Phycol 7:583–588CrossRefGoogle Scholar
  19. Ishikawa Y (1984) New seaweed resources 2: cultivation of Grateloupia filicina. Suisan no Kenkyu 3:57–60Google Scholar
  20. Jiang CM (2011) Study on the development of carpospores and discoid crusts of Grateloupia turuturu (Halymeniaceae, Rhodophyta). Dissertation, Ocean University of China, Qingdao (in Chinese with English abstract)Google Scholar
  21. Lafontaine N, Mussio I, Rusig AM (2011) Production and regeneration of protoplasts from Grateloupia turuturu Yamada (Rhodophyta). J Appl Phycol 23:17–24CrossRefGoogle Scholar
  22. Ma LB, Wang SJ, He PM (1995) Artificial breeding of commercial important red algae: Grateloupia. J Shanghai Fisheries University 4:93–98 (in Chinese with English abstract)Google Scholar
  23. Marston M, Villalard-Bohnsack M (2002) Genetic variability and potential sources of Grateloupia doryphora (Halymeniaceae, Rhodophyta), an invasive species in Rhode Island waters (USA). J Phycol 38:649–658CrossRefGoogle Scholar
  24. Miyazawa K, Ito K (1974a) Isolation of L-methionine-l-sulfoxide and N-methylmethionine sulfoide from a red alga Grateloupia turuturu. Bull Jpn Soc Sci Fish 40:655–660 (in Japanese)CrossRefGoogle Scholar
  25. Miyazawa K, Ito K (1974b) Isolation of a new peptide, L-citrulliny-L-arginine, from a red alga Grateloupia turuturu. Bull Jpn Soc Sci Fish 40:815–818 (in Japanese)CrossRefGoogle Scholar
  26. Pang SJ, Xiao T, Shan TF, Wang ZF, Gao SQ (2006) Evidences of the intertidal red alga Grateloupia turuturu in turning Vibrio parahaemolyticus into non-culturable state in the presence of light. Aquaculture 260:369–374CrossRefGoogle Scholar
  27. Plouguerné E, Hellio C, Deslandes E, Véron B, Stiger-Pouvreau V (2008) Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot Mar 51:202–208CrossRefGoogle Scholar
  28. Ribera MA, Boudouresque CF (1995) Introduced marine plants, with special reference to macroalgae: mechanisms and impact. Prog Phycol Res 11:187–268Google Scholar
  29. Robaina RR, García-Jiménez P, Luque A (1996) Light and glycerol driven development of Grateloupia doryphora (Rhodophyta) in vitro. Sci Mar 60:283–289Google Scholar
  30. Rodrigo M, Robaina RR (1997) Stress tolerance of photosynthesis in sporelings of the red alga Grateloupia doryphora compared to that of Stage III thalli. Mar Biol 128:689–694CrossRefGoogle Scholar
  31. Saunders GW, Withall RD (2006) Collections of the invasive species Grateloupia turuturu (Halymeniales, Rhodophyta) from Tasmania, Australia. Phycologia 45:711–714CrossRefGoogle Scholar
  32. Simon C, Ar Gall E, Deslandes E (2001) Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia 443:23–29CrossRefGoogle Scholar
  33. Simon-Colin C, Kervarec N, Pichon R, Deslandes E (2004) Purification and characterization of 4-methanesulfinyl-2-methylamino butyric acid from the red alga Grateloupia doryphora Howe. Phytochemistry Rev 3:367–370CrossRefGoogle Scholar
  34. Shao KS, Wang JX, Zhou BC (2004) Production and application of filaments of Grateloupia turuturu (Halymeniaceae, Rhodophyta). J Appl Phycol 16:431–437CrossRefGoogle Scholar
  35. Tseng CK (1983) Common seaweeds of China. Science, BeijingGoogle Scholar
  36. Verlaque M, Brannock PM, Komatsu T, Villalard-Bohnsack M, Marston M (2005) The genus Grateloupia C. Agardh (Halymeniaceae, Rhodophyta) in the Thau Lagoon (France, Mediterranean): a case study of marine plurispecific introductions. Phycologia 44:477–496CrossRefGoogle Scholar
  37. Villalard-Bohnsack M, Harlin MM (1997) The appearance of Grateloupia doryphora (Halymeniaceae, Rhodophyta) on the northeast coast of North America. Phycologia 36:324–328CrossRefGoogle Scholar
  38. Villalard-Bohnsack M, Harlin MM (2001) Grateloupia doryphora (Halymeniaceae, Rhodophyta) in Rhode Island waters (USA): geographical expansion, morphological variations and associated algae. Phycologia 40:372–380CrossRefGoogle Scholar
  39. Wang GG, Jiang CM, Wang SS, Wei XJ, Zhao FJ (2012) Early development of Grateloupia turuturu (Halymeniaceae, Rhodophyta). Chin J Oceanol Limnol 30:264–268CrossRefGoogle Scholar
  40. Wang QH, Liu YP, Zhang ED, Li DP, Zhang LC (2005) Cryopreservation of clonal gametophytes of Undaria pinnatifida by encapsulation-dehydration. Acta Oceanol Sinca 27:154–159 (in Chinese)Google Scholar
  41. Xie SP, Song WL, Huang J, Ma P, Yan XH (2006) The sporeling culture of SF-1 of Porphyra haitanensis. J Aquacult 27:39–44 (in Chinese)Google Scholar
  42. Xie CT, Chen CS, Xu Y, Ji DH (2010) Construction of a genetic linkage map for Porphyra haitanensis (Bangiales, Rhodophyta) based on sequence-related amplified polymorphism and simple sequence repeat markers. J Phycol 46:780–787Google Scholar
  43. Xu Y, Xie CT, Chen CS, Ji DH, Gao YH (2010) Construction of a genetic linkage map for Porphyra haitanensis. J Fisheries of China 34:1354–1362 (in Chinese with English abstract)Google Scholar
  44. Yin MY (2005) Studies on tissue culture for seed stock and seedling of marine macroalgae. Dissertation, Institute of Oceanology, Chinese Academy of Sciences (in Chinese with English abstract)Google Scholar
  45. Zhang LJ (2000) Initial study on the isolated regeneration of the fragments of Grateloupia livida (Harv.) Yamada. J Jimei University (Natural Science) 5:35–39, in Chinese with English abstractCrossRefGoogle Scholar
  46. Zhang ZY, Wei HX, Han YX, Wang GS (2007) Induction and seedling incubation of filaments from crusts of seaweed Grateloupia filicina. J Dalian Fisheries University 22:164–169 (in Chinese with English abstract)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Xiaojiao Wei
    • 1
  • Limei Shuai
    • 1
  • Bojun Lu
    • 1
  • Shasha Wang
    • 2
  • Jia Chen
    • 3
  • Gaoge Wang
    • 4
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR)KielGermany
  3. 3.Department of Biochemistry and Molecular Biology, Cancer InstituteCapital Medical UniversityBeijingChina
  4. 4.College of Marine Life SciencesOcean University of ChinaQingdaoChina

Personalised recommendations