Journal of Applied Phycology

, Volume 25, Issue 2, pp 643–660 | Cite as

Biochemical composition, biological activities and toxicological effects of two non-nodularin producing strains of Nodularia spumigena Mertens in Jürgens



We tested two non-nodularin-producing strains of the cyanobacterium Nodularia spumigena, isolated from a marine (Kachelotplate) and a brackish water (Banter Sea, Wilhelmshaven) habitat in Lower Saxony, Germany, for allelochemical production (e.g. alkaloids, flavonoids) and allelopathic activities (e.g. algicidal, anti-microbial). The growth experiments showed for the marine strain the highest cell density at 10 and 20 °C for the brackish water isolate (80 μmol  photons m−2 s−1). Phytochemical screening of the biomass extracts gave positive results for alkaloids, flavonoids, sterols and terpenoids in some of the tested assays. Most of these compounds were not present in supernatant extracts. Besides proalgal and anti-cyanobacterial properties of the high temperature treated marine strain, the supernatant extracts showed profungal and antibacterial activities in the 20 °C treated assays. In both, supernatant and biomass extracts, significant anti-oxidative activities were observed in the high-irradiance-treated marine and brackish water isolates. The highest toxicity was observed at the 5 and 20 °C brackish water isolates as well as 5 °C treated marine strain. With regard to fatty acid composition, both strains showed high levels of polyunsaturated fatty acids (PUFAs) and saturated fatty acids, with values of 36–54 % and 11–29 % of total fatty acids, respectively, whereas the levels of monounsaturated fatty acids were in general lower (8–16 %). Among PUFAs, linoleic (C18:2), α-linoleic (C18:3), γ-linoleic (C18:3) and arachidonic acid (C20:4) accounted 36.2 % of the total polyunsaturated fatty acids in the brackish water strain, while in the marine isolate, it was only 10.6 %.


Allelochemicals AChE inhibition Bioassay organisms Brine shrimp LUMIStox GC/MS analysis 



We are grateful to Dr. Uwe Walter (Kachelotplate) for his cooperation during the sampling events.


  1. Abd El-Baky HH, El Baz FK, El-Baroty GS (2008) Evaluation of marine alga Ulva lactuca L. as a source of natural preservative ingredient. Am Eurasian J Agric Environ Sci 3:434–444Google Scholar
  2. Aliotta G, Monaco P, Pinto G, Pollio A, Previtera L (1991) Potential allelochemicals from Pistia stratiotes L. J Chem Ecol 17:2223–2234CrossRefGoogle Scholar
  3. Allakhverdiev SI, Nishiyama Y, Osuzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867PubMedCrossRefGoogle Scholar
  4. Bajpai P, Bajpai PK (1993) Eicosapentaenoic acid (EPA) production from microorganisms: a review. J Biotechnol 30:161–183PubMedCrossRefGoogle Scholar
  5. Benkendorff K, Davis AR, Rogers CN, Bremner JB (2005) Free fatty acids and sterols in the benthic spawn of aquatic molluscs, and their associated antimicrobial properties. J Exp Mar Biol Ecol 316:29–44CrossRefGoogle Scholar
  6. Bláhová L, Oravec M, Marsálek B, Sejnohová L, Simek Z, Bláha L (2009) The first occurrence of the cyanobacterial alkaloid toxin cylindrospermopsin in the Czech Republic as determined by immunochemical and LC/MS methods. Toxicon 53:519–524PubMedCrossRefGoogle Scholar
  7. Brett MT, Müller-Navarra DC, Ballantyne AP, Ravet JL, Goldman CR (2006) Daphnia fatty acid composition reflects that of their diet. Limnol Oceanogr 51:2428–2437CrossRefGoogle Scholar
  8. Brito A, Newton A, Tett P, Fernandes TF (2009) Temporal and spatial variability of microphytobenthos in a shallow lagoon: Ria Formosa (Portugal). Estuar Coast Shelf Sci 83:67–76CrossRefGoogle Scholar
  9. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377CrossRefGoogle Scholar
  10. Cembella AD (2003) Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420–447CrossRefGoogle Scholar
  11. Chan AT, Andersen RJ, Leblanc MJ, Haeeison PJ (1980) Algal plating as a tool for investigating allelopathy among marine microalgae. Mar Biol 59:7–13CrossRefGoogle Scholar
  12. Chapman D (1975) Phase transitions and fluidity characteristics of lipids and cell membranes. Quart Rev Biophys 8:185–235CrossRefGoogle Scholar
  13. Chiang I-Z, Huang W-Y, Wu J-T (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 40:474–480CrossRefGoogle Scholar
  14. Colla LM, Reinehr CO, Reichert CJ, Costa AV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Biores Technol 98:1489–1493CrossRefGoogle Scholar
  15. Davoren M, Ní Shúilleabháin S, Hartl MGJ, Sheehan D, O’Brien NM, O’Halloran J, Van Pelt FNAM, Mothersill C (2005) A test battery approach for the ecotoxicological evaluation of estuarine sediments. Ecotoxicology 65:332–341Google Scholar
  16. Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi resistant Staphylococcus aureus (MRSA). Mar Biotechnol 11:45–52PubMedCrossRefGoogle Scholar
  17. Diehl K, Hagendorf U (1998) Datensammlung Bioteste. UBA-Texte 9/98, Umweltbundesamt.Google Scholar
  18. Dvořák P, Šucman E, Beňová K (2005) The development of a ten-day biotest using Artemia salina nauplii. Biol Bratis 60(5):593–597Google Scholar
  19. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharma 7:88–95CrossRefGoogle Scholar
  20. Erhard D, Gross EM (2006) Allelopathic activity of Elodea canadensis and E. nuttallii against epiphytes and phytoplankton. Aquat Bot 85:203–211CrossRefGoogle Scholar
  21. Ferris MJ, Hirsch CF (1991) Method for isolation and purification of cyanobacteria. Appl Environ Microbiol 57:1448–1452PubMedGoogle Scholar
  22. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  23. Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125CrossRefGoogle Scholar
  24. Fistarol GO, Legrand C, Granéli E (2005) Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol 41:153–161CrossRefGoogle Scholar
  25. Geitler L (1932) Cyanophyceae von Europa. Akademische Verlags-Gesellschaft, LeipzigGoogle Scholar
  26. Gillan FT, Johns RB, Verheyen TV, Volkman JK, Bavor HJ (1981) Transmonounsaturated fatty acids in marine bacterial isolates. Appl Environm Microbiol 41:849–856Google Scholar
  27. Granéli E, Johannsson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2:135–145CrossRefGoogle Scholar
  28. Granéli E, Hansen PJ (2006) Allelopathy in harmful algae: a mechanism to compete for resources? In: Granéli E, Turner JT (eds) Ecology of harmful algae. Ecological studies. Springer, Berlin, pp 189–201CrossRefGoogle Scholar
  29. Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 26–60Google Scholar
  30. Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339CrossRefGoogle Scholar
  31. Gross EM, Wolk CP, Jüttner F (1991) Fischerellin, a new allelochemical from the fresh-water cyanobacterium Fischerella muscicola. J Phycol 27:686–692CrossRefGoogle Scholar
  32. Harborne JB (1998) Phytochemical methods—a guide to modern techniques of plant analysis. Chapman and Hall, LondonGoogle Scholar
  33. Henriksen P (2005) Estimating nodularin content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments—a case study from the Baltic entrance area. Harmful Algae 4:167–178CrossRefGoogle Scholar
  34. Holton RW, Blecker HH (1972) Fatty acids in blue-green algae. In: Zaick JE (ed) Properties and products of algae. Plenum, New York, pp 115–127Google Scholar
  35. Hübel H, Hübel M (1980) Nitrogen fixation during blooms of Nodularia in coastal waters and backwaters of the Arkona Sea (Baltic Sea) in 1974. Int Rev Gesamten Hydrobiol 65:793–808CrossRefGoogle Scholar
  36. Ikawa M, Haney JF, Sasner JJ (1996) Inhibition of Chlorella growth by the lipids of cyanobacterium Microcystis aeruginosa. Hydrobiologia 331:167–170CrossRefGoogle Scholar
  37. Ikawa M, Sasner JJ, Haney JF (1997) Inhibition of Chlorella growth by degradation and related products of linoleic and linolenic acids and the possible significance of polyunsaturated fatty acids in phytoplankton ecology. Hydrobiologia 356:143–148CrossRefGoogle Scholar
  38. ISO (International Organization for Standardization) (1998) Water quality determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri. ISO, GenevaGoogle Scholar
  39. Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defence reaction in epilithic diatom biofilm. J Phycol 37:744–755CrossRefGoogle Scholar
  40. Jüttner F (2005) Evidence that polyunsaturated aldehydes of diatom are repellents for pelagic crustacean grazers. Aquat Ecol 39:271–282CrossRefGoogle Scholar
  41. Kamaya Y, Kurogi Y, Suzuki K (2003) Acute toxicity of fatty acids to the freshwater green alga Selenastrum capricornutum. Environm Toxicol 18:289–294CrossRefGoogle Scholar
  42. Kankaanpää HT, Sipiä VO, Kuparinen JS, Ott JL, Carmichael WW (2001) Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water-bloom in the western Gulf of Finland, Baltic Sea, in August 1999. Phycologia 40:268–274CrossRefGoogle Scholar
  43. Keating KI (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science 196:885–887PubMedCrossRefGoogle Scholar
  44. Keating KI (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–973PubMedCrossRefGoogle Scholar
  45. Kenyon CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous bluegreen algae. Arch Mikrobiol 83:216–236PubMedCrossRefGoogle Scholar
  46. Kohlhase M, Pohl P (1988) Saturated and unsaturated sterols of nitrogen-fixing blue-green algae (cyanobacteria). Phytochemistry 27:1735–1740CrossRefGoogle Scholar
  47. Komárek J, Hübel M, Hübel H, Šmarda J (1993) The Nodularia studies. 2. Taxonomy. Algol Stud 68:1–25Google Scholar
  48. Kononen K, Lahdes EO, Grönlund L (1993) Physiological and community responses of summer plankton to nutrient manipulation in the Gulf of Finland (Baltic Sea) with special reference to phosphorus. Sarsia 78:243–253Google Scholar
  49. Kononen K, Kuparinen J, Mäkelä K, Laanemets J, Pavelson J, Nömmann S (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland. Limnol Oceanogr 41:98–112Google Scholar
  50. Leão PN, Pereira AR, Liu W-T, Ng J, Pevzner PA, Dorrestein PC, König GM, Vasconcelos VM, Gerwick WH (2010) Synergistic allelochemicals from a freshwater cyanobacterium. Proc Natl Acad Sci USA 107:11183–11188PubMedCrossRefGoogle Scholar
  51. LeBlanc BW, Davis OK, Boue S, DeLucca A, Deeby T (2009) Antioxidant activity of Sonoran Desert bee pollen. Food Chem 115:1299–1305CrossRefGoogle Scholar
  52. Lee S-H, Karawita R, Affan A, Lee J-B, Lee K-W, Lee B-J, Kim D-W, Jeon Y-J (2009) Potential of benthic diatoms Achnanthes longipes, Amphora coffeaeformis and Navicula sp. (Bacillariophyceae) as antioxidant sources. Algae 24:47–55CrossRefGoogle Scholar
  53. Leflaive J, Ten-Hage L (2009) Allelopathic interactions in benthic biofilms: effects of abiotic conditions on production of and sensitivity to allelochemicals. J N Am Bentholl Soc 28:273–282CrossRefGoogle Scholar
  54. Legrand C, Rengefors K, Fistarol GO, Granéli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–419CrossRefGoogle Scholar
  55. Lehtimäki J, Sivonen K, Luukkainen R, Niemelä SI (1994) The effects of incubation time, temperature, light, salinity, and phosphorus on growth and hepatotoxin production by Nodularia strains. Arch Hydrobiol 130:269–282Google Scholar
  56. Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl Environ Microbiol 63:1647–1656PubMedGoogle Scholar
  57. Lopes V, Vasconcelos V (2011) Bioactivity of benthic and picoplanktonic estuarine cyanobacteria on growth of photoautotrophs: inhibition versus stimulation. Marine Drugs 9:790–802PubMedCrossRefGoogle Scholar
  58. Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  59. Mason CP, Edwards KR, Pignatello J, Carlson RE, Gleason FK, Wood J (1982) Isolation of chlorine containing antibiotic from the freshwater cyanobacterium Scytonema hofmanii. Science 215:400–402PubMedCrossRefGoogle Scholar
  60. McCracken MD, Middaugh RE, Middaugh RS (1980) A chemical characterization of an algal inhibitor obtained from Chlamydomonas. Hydrobiologia 70:271–276CrossRefGoogle Scholar
  61. Mekki A, Dhouib A, Feki F, Sayadi S (2008) Assessment of toxicity of the untreated and treated olive mill wastewaters and soil irrigated by using microbiotests. Ecotoxicol Environ Saf 69:488–495PubMedCrossRefGoogle Scholar
  62. Moisander PH, McClinton E, Paerl HW (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442PubMedCrossRefGoogle Scholar
  63. Molisch H (1937) Der Einfluss einer Pflanze auf die andere—Allelopathie. Fischer, JenaGoogle Scholar
  64. Mulderij G, Mau B, Van Donk E, Gross EM (2007) Allelopathic activity of Stratiotes aloides on phytoplankton towards identification of allelopathic substances. Hydrobiologia 584:89–100CrossRefGoogle Scholar
  65. Mundt S, Kreitlow S, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J Appl Phycol 15:263–267CrossRefGoogle Scholar
  66. Mur LR, Skulberg OM, Utkilen H (1999) Cyanobacteria in the environment. In: Chorus I, Bartram JE (eds) Toxic cyanobacteria in the water. E. & F.N. Spon, London, pp 15–40Google Scholar
  67. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713CrossRefGoogle Scholar
  68. Murata N, Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) The biochemistry of plants. Academic, San Diego, pp 315–347Google Scholar
  69. Musial A, Plinski M (2003) Influence of salinity of the growth of Nodularia spumigena Mertens. Oceanol Hydrobiol Stud 32:45–52Google Scholar
  70. Oberemm A, Fastner J, Steinberg CEW (1997) Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio rerio). Wat Res 31:2918–2921CrossRefGoogle Scholar
  71. Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnol Oceanogr 33:823–847CrossRefGoogle Scholar
  72. Parker PL, Van Baalen C, Maurer L (1967) Fatty acids in eleven species of blue-green algae: geochemical significance. Science 155:707–708PubMedCrossRefGoogle Scholar
  73. Parsons T, Maita Y, Lalli M (1984) A manual of chemical and biological methods for seawater analysis, 1st edn. Pergamon, New YorkGoogle Scholar
  74. Patterson GML, Larsen LK, Moore RE (1994) Bioactive natural products from blue-green algae. J Appl Phycol 6:151–157CrossRefGoogle Scholar
  75. Perry GJ, Volkman JK, Johns RB (1979) Fatty acids of bacterial origin in contemporary marine sediments. Geochim Cosmochim Acta 43:1715–1725CrossRefGoogle Scholar
  76. Pushparaj B, Pelosi E, Jüttner F (1999) Toxicological analysis of the marine cyanobacterium Nodularia harveyana. J Appl Phycol 10:527–530CrossRefGoogle Scholar
  77. Pushparaj B, Buccioni A, Paperi R, Piccardi R, Ena A, Carlozzi P, Sili C (2008) Fatty acid composition of Antarctic cyanobacteria. Phycologia 47:430–434CrossRefGoogle Scholar
  78. Reed RH, Stewart WDP (1985) Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats. Mar Biol 88:1–9CrossRefGoogle Scholar
  79. Reigosa MJ, Sanchez-Moreiras A, Gonzales L (1999) Ecophysiological approach in allelopathy. Crit Rev Plant Sci 18:577–608CrossRefGoogle Scholar
  80. Reinikainen M, Meriluoto JA, Spoof L, Harada K (2001) The toxicities of a polyunsaturated fatty acid and a microcystin to Daphnia magna. Environ Toxicol 16:444–448PubMedCrossRefGoogle Scholar
  81. Rice EL (1984) Allelopathy. Academic, New YorkGoogle Scholar
  82. Rice EL (1985) Allelopathy—an overview. In: Copper-Driver GA, Swain T, Conn EE (eds) Recent advances in phytochemistry, vol 19, Chemically mediated interactions between plants and other organisms. Plenum, New York, pp 81–105Google Scholar
  83. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159CrossRefGoogle Scholar
  84. Rouhiainen L, Sivonen K, Buikema WJ, Haselkorn R (1995) Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer. J Bacteriol 177:6021–6026PubMedGoogle Scholar
  85. Santoyo S, Herrero M, Javier F, Cifuentes A, Ibanez E, Jaime L (2006) Functional characterization of pressurized liquid extracts of Spirulina platensis. Europ Food Res Technol 224:75–81CrossRefGoogle Scholar
  86. Sayanova O, Napier JA (2004) Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65:147–158PubMedCrossRefGoogle Scholar
  87. Schlegel I, Doan NT, de Chazal N, Smith GD (1999) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479CrossRefGoogle Scholar
  88. Scholz B, Liebezeit G (2006) Chemical screening for bioactive substances in culture media of microalgae and cyanobacteria from marine and brackish water habitats: first results. Pharmaceut Biol 44:544–549CrossRefGoogle Scholar
  89. Scholz B, Liebezeit G (2012a) Screening for competition effects and allelochemicals in benthic marine diatoms and cyanobacteria isolated from an intertidal flat (southern North Sea). Phycologia 51:432–450CrossRefGoogle Scholar
  90. Scholz B, Liebezeit G (2012b) Screening for biological activities and toxicological effects of 63 phytoplankton species isolated from freshwater, marine and brackish water habitats. - Harmful Algae. doi: 10.1016/j.hal.2012.07.007
  91. Serbinova E, Kagan V, Han D, Packer L (1991) Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radical Bio Med 10:263–275CrossRefGoogle Scholar
  92. Singh SC, Sinha RP, Häder DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308Google Scholar
  93. Šmarda J, Komárek J, Cáslavská J, Hübel M (1988) The Nodularia studies. 1. Introduction, fine structure. Algol Studies 50–53:109–129, Arch Hydrobiol 80Google Scholar
  94. Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosyn-thesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344CrossRefGoogle Scholar
  95. Song D, Fu J, Shi D (2008) Exploitation of oil-bearing microalgae for biodiesel. Chin J Biotechnol 24:341–348CrossRefGoogle Scholar
  96. Stadtman TC (1957) Preparation and assay of cholesterol and ergosterol. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 3. Academic, New York, pp 392–394CrossRefGoogle Scholar
  97. Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Exp Mar Biol Ecol 308:85–101CrossRefGoogle Scholar
  98. Suikkanen S, Fistarol GO, Granéli E (2005) Effects of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser 287:1–9CrossRefGoogle Scholar
  99. Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A (2002) Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–1663CrossRefGoogle Scholar
  100. Takeyama H, Takeda D, Yazawa K, Yamada A, Matsunaga T (1997) Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 143:2725–2731PubMedCrossRefGoogle Scholar
  101. Turner BB (1916) The chemical composition of Oscillaria rolifica. J Am Chem Soc 38:1402–1417CrossRefGoogle Scholar
  102. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9:1–38Google Scholar
  103. Vanhaecke P, Persoone G (1981) Report on an intercalibration exercise on a short-term standard toxicity test with Artemia nauplii (ARC-test). Inerm 10:359–376Google Scholar
  104. Vidoudez C, Pohnert G (2008) Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. J Plank Res 30:1305–1313CrossRefGoogle Scholar
  105. Vioque A (2007) Transformation of Cyanobacteria. Adv Experi Medi Biol 616:12–22CrossRefGoogle Scholar
  106. Volkman JK (2003) Sterols in microorganisms. Appl Microbiol Biotechnol 60:495–506PubMedGoogle Scholar
  107. Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36:139–159CrossRefGoogle Scholar
  108. Vargas MA, Rodriguez H, Moreno J, Olivares H, Del Campo JA, Rivas J, Guerrero MG (1998) Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. J Phycol 34:812–817CrossRefGoogle Scholar
  109. Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environment conditions. Int Revue Ges Hydrobiol 82:169–184CrossRefGoogle Scholar
  110. Watanabe, K., Ishikawa, C., Inoue, H., Cenhua, D., Yazawa, K. & Kondo, K. (1994) Incorporation of exogenous docosahexaenoic acid into various bacterial lipids. J Am Oil Chem Soc 71:325–330CrossRefGoogle Scholar
  111. Watson SB (2003) Cyanobacterial and eukaryotic algal odour compounds: signals or by-products? A review of their biological activity. Phycologia 42:332–350CrossRefGoogle Scholar
  112. Welker M, von Dohren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563PubMedCrossRefGoogle Scholar
  113. Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218PubMedCrossRefGoogle Scholar
  114. Wilson R, Sargent JR (1992) High-resolution separation of polyunsaturated fatty acids by argentation thin-layer chromatography. J Chromatogr 623:403–407CrossRefGoogle Scholar
  115. Wöstmann R, Liebezeit G (2008) Chemical composition of the mangrove holly Acanthus ilicifolius (Acanthaceae)—review and additional data. Mar Biodiv 38:31–37Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgWilhelmshavenGermany

Personalised recommendations