Advertisement

Journal of Applied Phycology

, Volume 25, Issue 2, pp 555–565 | Cite as

Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions

  • Ping Zhang
  • Chunmei Zhai
  • Xiaoxian Wang
  • Changhong Liu
  • Jihong Jiang
  • Yarong Xue
Article

Abstract

Cyanobacteria are the dominant bloom-forming species in Lake Taihu. Understanding the competition among algae is important to control strategies for bloom formation and outbreaks in freshwater ecosystems. In this study, we demonstrate that the cyanobacterium Microcystis aeruginosa PCC7820 and the green alga Quadrigula chodatii FACHB-1080 exhibit a strong competitive inhibitory relationship under co-culture conditions, with the latter strain inhibiting the former. Several factors influence the competitive relationship between the two species, including nutrition, temperature, and organic/inorganic compounds. Q. chodatii strongly inhibited M. aeruginosa growth through the inhibition of nitrogen utilization during co-culture. Temperature was also an influential determinant of the competition capacity between the two species under eutrophic conditions: at lower temperatures (15 °C), M. aeruginosa grew better than Q. chodatii, but the difference was not significant (p > 0.05), whereas at higher temperatures (25 °C, 35 °C), Q. chodatii grew significantly better than M. aeruginosa (p < 0.05). Furthermore, the Q. chodatii filtrate strongly inhibited the growth of M. aeruginosa. An analysis of the crude extracts of the algae culture filtrates from uni- and co-cultures using gas chromatography mass spectrometry (GC/MS) indicated that algal metabolites, such as dibutyl phthalate and beta-sitosterol, might play a key role in the competition between algae.

Keywords

M. aeruginosa Q. chodatii Competitive inhibition 

Notes

Acknowledgments

This work was supported through funding from National Basic Research Program of China (2008CB418004), Public Benefits Project through Ministry of Environmental Protection of PRC (201009023), Fundamental Research Funds for the Central Universities FRFCU (1082020803, 1092020804) and NTPFS (J1103512).

References

  1. Aliotta G, Greca ND, Monaco P, Pinto G, Pollio A, Previtera L (1990) In vitro algal growth inhibition by phytotoxins of Typha latifolia L. J Chem Ecol 16:2637–2646CrossRefGoogle Scholar
  2. Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70CrossRefGoogle Scholar
  3. Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20CrossRefGoogle Scholar
  4. Babu B, Wu JT (2010) Production of phthalate esters by nuisance freshwater algae and cyanobacteria. Sci Total Environ 408:4969–4975PubMedCrossRefGoogle Scholar
  5. Cai HJ, Tang XX, Zhang PY et al (2005) The effect of initial cell density on the interspecific competition between three species of red tide microalgae. Acta Ecologica Sinica 25:1331–1336Google Scholar
  6. Carmichael WW (1996) Toxic Microcystis and the environment. In: Watanabe MF, Harada KH, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC Press, Boca Raton, pp 1–11Google Scholar
  7. Chang FH, Anderson C, Boustead NC (1990) First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cage-reared salmon in Big Glory Bay, New Zealand. New Zeal J Mar Fresh 24:461–469Google Scholar
  8. Chen YW, Gao XY, Chen WM, Qin B (1999) Growth characters and pure culture of Microcystis from Taihu lake. J Lake Sci 11:352–356Google Scholar
  9. Chen YW, Qin B, Teubner K, Dokulil M (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453CrossRefGoogle Scholar
  10. Cheng HM, Qiu BS (2006) Cyanobacterial gas vesicles and their regulation on the vertical distribution of cyanobacteria in water body. Plant Physiol Commun 42:974–980Google Scholar
  11. Chu ZS, Jin XC, Iwami N, Inamori Y (2007) The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. Hydrobiologia 581:217–223CrossRefGoogle Scholar
  12. D’Elia CF, Steudler PA, Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol Oceanogr 22:760–764CrossRefGoogle Scholar
  13. Etchegaray A, Rabello E, Dieckmann R, Moon DH, Fiore MF, von Döhren H, Tsai SM, Neilan BA (2004) Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 16:237–243CrossRefGoogle Scholar
  14. Fogg GE (1971) Extracellular products of algae in freshwater. Arch Hydrobiol 5:1–25Google Scholar
  15. Graham B, Mayol-Bracero OL, Guyon P et al (2002) Water soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC/MS. J Geophys Res 107:8047CrossRefGoogle Scholar
  16. Gu QH, Zhao L, Tan X (2007) Studies on competition predominance of Microcystis aeruginosa, Anabaena spiroides and Aphanizomeno flos-aquae. J Anhui Agr Sci 35:1990–1991Google Scholar
  17. Hu SH, Zhang DY (1993) The effects of initial population density on the competition for limiting nutrients in two freshwater algae. Oecologia 96:569–574CrossRefGoogle Scholar
  18. Ignatiades L, Vassiliou A, Karydis M (1985) A comparison of phytoplankton biomass parameters and their interrelation with nutrients in Saronicos Gulf (Greece). Hydrobiologia 128:201–206CrossRefGoogle Scholar
  19. Imai I, Sunahara T, Nishikawa T, Hori Y, Kondo R, Hiroishi S (2001) Fluctuations of the red tide flagellates Chattonella spp. (Ra, phidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland Sea, Japan. Mar Biol 138:1043–1049CrossRefGoogle Scholar
  20. Issa AA (1999) Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environ Toxicol Pharmacol 8:33–37PubMedCrossRefGoogle Scholar
  21. Jang MH, Kyong H, Takamura N (2007) Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon 49:727–733PubMedCrossRefGoogle Scholar
  22. Johansson N, Graneli E (1999) Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar Biol 135:209–217CrossRefGoogle Scholar
  23. Kearns KD, Hunter MD (2002) Algal extracellular products suppress A. flos-aquae heterocyst spacing. Microb Ecol 43:174–180PubMedCrossRefGoogle Scholar
  24. Kitaguchi H, Hiragushi N, Mitsutani A, Katano T, Jin E, Kong S, Han M (2001) Isolation of an algicidal bacterium with activity against the harmful dinoflagellate Heterocapsa circzclarisquanta (Dinophyceae). Phycologia 40:275–279CrossRefGoogle Scholar
  25. Kong FX, Ma RH, Gao JFWXD (2009) The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. J Lake Sci 21:314–328Google Scholar
  26. Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118PubMedCrossRefGoogle Scholar
  27. Kuwata A, Miyazaki T (2000) Effects of ammonium supply rates on competition between Microcystis novacekii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta): simulation study. Ecol Modell 135:81–87CrossRefGoogle Scholar
  28. Leão PN, Vasconcelos MT, Vasconcelos VM (2009) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282PubMedCrossRefGoogle Scholar
  29. Legrand C, Rengefors K, Fistarol GO, Granli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phyecologia 42:406–419CrossRefGoogle Scholar
  30. Li XY, Liu YD, Zhang BJ (2005) Toxic effects of microcystin on snail (Bulinus australinanus). J Henan Normal Univ (Natural Science) 33:106–109Google Scholar
  31. Lin YX, Han M (1998) The study growth factor of the Microcystis aeraginsoa Kuetz during eutrophication of Dianchi Lake. Adv Environ Sci 6:82–87Google Scholar
  32. Liu YM, Liu YD, Li DH, Shen YW, Wang HZ (2004) Bioassay for the toxicity of Aphanizomenon flos-aquae bloom from lake Dian Chi. Acta Hydrobiologica Sinica 28:216–218Google Scholar
  33. Liu WT, Wang XL, Sheng HJ et al (2009) Inhibitory effects of allelochemicals on the algae growth under the influence of different solvents. J Saf Environ 9:67–70Google Scholar
  34. Menzel DW, Corwin N (1965) The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol Oceanogrr 10:280–282CrossRefGoogle Scholar
  35. Mu RM, Fan ZQ, Pei HY, Yuan X, Liu S, Wang X (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci 19:1336–1340CrossRefGoogle Scholar
  36. Pratt DM (1966) Competition between S. costatum and O. luteus in Narragansett Bay and in culture. Limnol Oceanogr 11:447–455CrossRefGoogle Scholar
  37. Qiu BS, Gao KS (2001) Carbon dioxide concentrating mechanism in blue-green algae. Plant Physiol Commun 37:385–392Google Scholar
  38. Rengefors K, Legrand C (2001) Toxicity in Peridinium aciculiferum—an adaptive strategy to outcompete other winter phytoplankton? Limnol Oceanogr 46:1990–1997CrossRefGoogle Scholar
  39. Rimando AM, Duke SO (2003) Studies on rice allelochemicals. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology, and production-crop production. Hoboken, New Jersey, pp 221–224Google Scholar
  40. Semina HJ (1978) The size of cells. In: Sournia A (ed) Phytoplankton Manual. Monogr Oceanogr Methodol UNESCO, Paris, p 337Google Scholar
  41. Šestanović S, Šolić M, Krstulović N, Bogner D (2005) Volume, abundance and biomass of sediment bacteria in the eastern mid Adriatic Sea. Acta Adriat 46:177–191Google Scholar
  42. Song XL, Liu ZW, Pan HK et al (2007) Phytoplankton community structure in MeiLiang Bay and Lake Wuli of Lake Taihu. J Lake Sci 19:643–651Google Scholar
  43. Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101CrossRefGoogle Scholar
  44. Taylor FJR, Haigh R (1993) The ecology of fish-killing blooms of the chloromonad flagellate Heterosigma in the Strait of Georgia and adjacent waters. In: Smayda TJ, Shimizu Y (eds) Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, pp 705–710Google Scholar
  45. Valdor R, Aboal M (2007) Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49:769–779PubMedCrossRefGoogle Scholar
  46. Volterra V (1926) Fluctuation in the abundance of a species considered mathematically. Nature 118:558–560CrossRefGoogle Scholar
  47. Wan L, Zhu W, Zhao LF (2007) Effect of nitrogen and phosphorus on growth and competition of M. aeruginosa and S. quadricauda. Environ Sci 28:1230–1235Google Scholar
  48. Wu WL, Lin YX, Liu LP et al (1997) Research of toxin of main algae in the Dian Chi Lake. Yunnan Environ Sci 16:26–29Google Scholar
  49. Wu ZB, Zhang SH, Wu XH et al (2007) Allelopathic interactions between Potamogeton maackianus and Microcystis aeruginosa. Allelopathy J 20:327–338Google Scholar
  50. Xian QM, Chen HD, Zou HX et al (2006) Allelopathic activity of volatile substance from submerged macrophytes on Microcystis aeruginosa. Acta Ecologica Sinica 26:3549–3554CrossRefGoogle Scholar
  51. You XH, Wang ZL, Shi XY et al (2007) Advances in the studies of phytoplankton interspecific competition. Trans Oceanol Limn 4:161–166Google Scholar
  52. Zhang T, Song LR (2006) Allelopathic effect between Microcystis aeruginosa and three filamentous cyanobacteria. J Lake Sci 18:150–156Google Scholar
  53. Zheng ZM, Bai FF, Lu KH et al (2008) Growth characteristics and competitive parameters of Microcystis aeruginosa and Scenedesmus obliquus at different temperatures. Acta Hydrobiologica Sinica 32:720–728CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ping Zhang
    • 1
  • Chunmei Zhai
    • 1
  • Xiaoxian Wang
    • 1
  • Changhong Liu
    • 1
  • Jihong Jiang
    • 2
  • Yarong Xue
    • 1
  1. 1.State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
  2. 2.The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu ProvinceXuzhouChina

Personalised recommendations