Skip to main content
Log in

Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacteria are the dominant bloom-forming species in Lake Taihu. Understanding the competition among algae is important to control strategies for bloom formation and outbreaks in freshwater ecosystems. In this study, we demonstrate that the cyanobacterium Microcystis aeruginosa PCC7820 and the green alga Quadrigula chodatii FACHB-1080 exhibit a strong competitive inhibitory relationship under co-culture conditions, with the latter strain inhibiting the former. Several factors influence the competitive relationship between the two species, including nutrition, temperature, and organic/inorganic compounds. Q. chodatii strongly inhibited M. aeruginosa growth through the inhibition of nitrogen utilization during co-culture. Temperature was also an influential determinant of the competition capacity between the two species under eutrophic conditions: at lower temperatures (15 °C), M. aeruginosa grew better than Q. chodatii, but the difference was not significant (p > 0.05), whereas at higher temperatures (25 °C, 35 °C), Q. chodatii grew significantly better than M. aeruginosa (p < 0.05). Furthermore, the Q. chodatii filtrate strongly inhibited the growth of M. aeruginosa. An analysis of the crude extracts of the algae culture filtrates from uni- and co-cultures using gas chromatography mass spectrometry (GC/MS) indicated that algal metabolites, such as dibutyl phthalate and beta-sitosterol, might play a key role in the competition between algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aliotta G, Greca ND, Monaco P, Pinto G, Pollio A, Previtera L (1990) In vitro algal growth inhibition by phytotoxins of Typha latifolia L. J Chem Ecol 16:2637–2646

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Article  Google Scholar 

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20

    Article  Google Scholar 

  • Babu B, Wu JT (2010) Production of phthalate esters by nuisance freshwater algae and cyanobacteria. Sci Total Environ 408:4969–4975

    Article  PubMed  CAS  Google Scholar 

  • Cai HJ, Tang XX, Zhang PY et al (2005) The effect of initial cell density on the interspecific competition between three species of red tide microalgae. Acta Ecologica Sinica 25:1331–1336

    Google Scholar 

  • Carmichael WW (1996) Toxic Microcystis and the environment. In: Watanabe MF, Harada KH, Carmichael WW, Fujiki H (eds) Toxic Microcystis. CRC Press, Boca Raton, pp 1–11

    Google Scholar 

  • Chang FH, Anderson C, Boustead NC (1990) First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cage-reared salmon in Big Glory Bay, New Zealand. New Zeal J Mar Fresh 24:461–469

    Google Scholar 

  • Chen YW, Gao XY, Chen WM, Qin B (1999) Growth characters and pure culture of Microcystis from Taihu lake. J Lake Sci 11:352–356

    Google Scholar 

  • Chen YW, Qin B, Teubner K, Dokulil M (2003) Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J Plankton Res 25:445–453

    Article  Google Scholar 

  • Cheng HM, Qiu BS (2006) Cyanobacterial gas vesicles and their regulation on the vertical distribution of cyanobacteria in water body. Plant Physiol Commun 42:974–980

    Google Scholar 

  • Chu ZS, Jin XC, Iwami N, Inamori Y (2007) The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. Hydrobiologia 581:217–223

    Article  Google Scholar 

  • D’Elia CF, Steudler PA, Corwin N (1977) Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol Oceanogr 22:760–764

    Article  Google Scholar 

  • Etchegaray A, Rabello E, Dieckmann R, Moon DH, Fiore MF, von Döhren H, Tsai SM, Neilan BA (2004) Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19. J Appl Phycol 16:237–243

    Article  CAS  Google Scholar 

  • Fogg GE (1971) Extracellular products of algae in freshwater. Arch Hydrobiol 5:1–25

    Google Scholar 

  • Graham B, Mayol-Bracero OL, Guyon P et al (2002) Water soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC/MS. J Geophys Res 107:8047

    Article  Google Scholar 

  • Gu QH, Zhao L, Tan X (2007) Studies on competition predominance of Microcystis aeruginosa, Anabaena spiroides and Aphanizomeno flos-aquae. J Anhui Agr Sci 35:1990–1991

    Google Scholar 

  • Hu SH, Zhang DY (1993) The effects of initial population density on the competition for limiting nutrients in two freshwater algae. Oecologia 96:569–574

    Article  Google Scholar 

  • Ignatiades L, Vassiliou A, Karydis M (1985) A comparison of phytoplankton biomass parameters and their interrelation with nutrients in Saronicos Gulf (Greece). Hydrobiologia 128:201–206

    Article  CAS  Google Scholar 

  • Imai I, Sunahara T, Nishikawa T, Hori Y, Kondo R, Hiroishi S (2001) Fluctuations of the red tide flagellates Chattonella spp. (Ra, phidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland Sea, Japan. Mar Biol 138:1043–1049

    Article  CAS  Google Scholar 

  • Issa AA (1999) Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environ Toxicol Pharmacol 8:33–37

    Article  PubMed  CAS  Google Scholar 

  • Jang MH, Kyong H, Takamura N (2007) Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon 49:727–733

    Article  PubMed  CAS  Google Scholar 

  • Johansson N, Graneli E (1999) Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar Biol 135:209–217

    Article  CAS  Google Scholar 

  • Kearns KD, Hunter MD (2002) Algal extracellular products suppress A. flos-aquae heterocyst spacing. Microb Ecol 43:174–180

    Article  PubMed  CAS  Google Scholar 

  • Kitaguchi H, Hiragushi N, Mitsutani A, Katano T, Jin E, Kong S, Han M (2001) Isolation of an algicidal bacterium with activity against the harmful dinoflagellate Heterocapsa circzclarisquanta (Dinophyceae). Phycologia 40:275–279

    Article  Google Scholar 

  • Kong FX, Ma RH, Gao JFWXD (2009) The theory and practice of prevention, forecast and warning on cyanobacteria bloom in Lake Taihu. J Lake Sci 21:314–328

    CAS  Google Scholar 

  • Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118

    Article  PubMed  CAS  Google Scholar 

  • Kuwata A, Miyazaki T (2000) Effects of ammonium supply rates on competition between Microcystis novacekii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta): simulation study. Ecol Modell 135:81–87

    Article  CAS  Google Scholar 

  • Leão PN, Vasconcelos MT, Vasconcelos VM (2009) Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–282

    Article  PubMed  Google Scholar 

  • Legrand C, Rengefors K, Fistarol GO, Granli E (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phyecologia 42:406–419

    Article  Google Scholar 

  • Li XY, Liu YD, Zhang BJ (2005) Toxic effects of microcystin on snail (Bulinus australinanus). J Henan Normal Univ (Natural Science) 33:106–109

    CAS  Google Scholar 

  • Lin YX, Han M (1998) The study growth factor of the Microcystis aeraginsoa Kuetz during eutrophication of Dianchi Lake. Adv Environ Sci 6:82–87

    Google Scholar 

  • Liu YM, Liu YD, Li DH, Shen YW, Wang HZ (2004) Bioassay for the toxicity of Aphanizomenon flos-aquae bloom from lake Dian Chi. Acta Hydrobiologica Sinica 28:216–218

    Google Scholar 

  • Liu WT, Wang XL, Sheng HJ et al (2009) Inhibitory effects of allelochemicals on the algae growth under the influence of different solvents. J Saf Environ 9:67–70

    Google Scholar 

  • Menzel DW, Corwin N (1965) The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol Oceanogrr 10:280–282

    Article  Google Scholar 

  • Mu RM, Fan ZQ, Pei HY, Yuan X, Liu S, Wang X (2007) Isolation and algae-lysing characteristics of the algicidal bacterium B5. J Environ Sci 19:1336–1340

    Article  CAS  Google Scholar 

  • Pratt DM (1966) Competition between S. costatum and O. luteus in Narragansett Bay and in culture. Limnol Oceanogr 11:447–455

    Article  Google Scholar 

  • Qiu BS, Gao KS (2001) Carbon dioxide concentrating mechanism in blue-green algae. Plant Physiol Commun 37:385–392

    CAS  Google Scholar 

  • Rengefors K, Legrand C (2001) Toxicity in Peridinium aciculiferum—an adaptive strategy to outcompete other winter phytoplankton? Limnol Oceanogr 46:1990–1997

    Article  CAS  Google Scholar 

  • Rimando AM, Duke SO (2003) Studies on rice allelochemicals. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology, and production-crop production. Hoboken, New Jersey, pp 221–224

    Google Scholar 

  • Semina HJ (1978) The size of cells. In: Sournia A (ed) Phytoplankton Manual. Monogr Oceanogr Methodol UNESCO, Paris, p 337

    Google Scholar 

  • Šestanović S, Šolić M, Krstulović N, Bogner D (2005) Volume, abundance and biomass of sediment bacteria in the eastern mid Adriatic Sea. Acta Adriat 46:177–191

    Google Scholar 

  • Song XL, Liu ZW, Pan HK et al (2007) Phytoplankton community structure in MeiLiang Bay and Lake Wuli of Lake Taihu. J Lake Sci 19:643–651

    CAS  Google Scholar 

  • Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101

    Article  Google Scholar 

  • Taylor FJR, Haigh R (1993) The ecology of fish-killing blooms of the chloromonad flagellate Heterosigma in the Strait of Georgia and adjacent waters. In: Smayda TJ, Shimizu Y (eds) Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, pp 705–710

    Google Scholar 

  • Valdor R, Aboal M (2007) Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49:769–779

    Article  PubMed  CAS  Google Scholar 

  • Volterra V (1926) Fluctuation in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Wan L, Zhu W, Zhao LF (2007) Effect of nitrogen and phosphorus on growth and competition of M. aeruginosa and S. quadricauda. Environ Sci 28:1230–1235

    CAS  Google Scholar 

  • Wu WL, Lin YX, Liu LP et al (1997) Research of toxin of main algae in the Dian Chi Lake. Yunnan Environ Sci 16:26–29

    Google Scholar 

  • Wu ZB, Zhang SH, Wu XH et al (2007) Allelopathic interactions between Potamogeton maackianus and Microcystis aeruginosa. Allelopathy J 20:327–338

    Google Scholar 

  • Xian QM, Chen HD, Zou HX et al (2006) Allelopathic activity of volatile substance from submerged macrophytes on Microcystis aeruginosa. Acta Ecologica Sinica 26:3549–3554

    Article  CAS  Google Scholar 

  • You XH, Wang ZL, Shi XY et al (2007) Advances in the studies of phytoplankton interspecific competition. Trans Oceanol Limn 4:161–166

    Google Scholar 

  • Zhang T, Song LR (2006) Allelopathic effect between Microcystis aeruginosa and three filamentous cyanobacteria. J Lake Sci 18:150–156

    Google Scholar 

  • Zheng ZM, Bai FF, Lu KH et al (2008) Growth characteristics and competitive parameters of Microcystis aeruginosa and Scenedesmus obliquus at different temperatures. Acta Hydrobiologica Sinica 32:720–728

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported through funding from National Basic Research Program of China (2008CB418004), Public Benefits Project through Ministry of Environmental Protection of PRC (201009023), Fundamental Research Funds for the Central Universities FRFCU (1082020803, 1092020804) and NTPFS (J1103512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Zhai, C., Wang, X. et al. Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. J Appl Phycol 25, 555–565 (2013). https://doi.org/10.1007/s10811-012-9890-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9890-5

Keywords

Navigation