Advertisement

Journal of Applied Phycology

, Volume 25, Issue 2, pp 467–475 | Cite as

Subcellular localization-dependent regulation of the three Spirulina desaturase genes, desC, desA, and desD, under different growth phases

  • Tippawan Mapaisansup
  • Rayakorn Yutthanasirikul
  • Apiradee Hongsthong
  • Morakot Tanticharoen
  • Marasri Ruengjitchatchawalya
Article

Abstract

Spirulina, a well-known cyanobacterium, is a potential alternative source for commercial γ-linolenic acid (C18:3Δ9,12,6, GLA) production. During the Spirulina desaturation process, three enzymes, which are encoded by desC, desA, and desD, respectively, introduce double bonds at the Δ9, Δ12, and Δ6 positions of stearic acid (C18:0), oleic acid (C18:1Δ9), and linoleic acid (C18:2Δ9,12). In the present study, transcriptional and translational expression of the desaturase genes during various growth phases of Spirulina platensis Z19/2 was examined. Moreover, the desaturase levels and fatty acids were analyzed in two subcellular locations, the plasma membrane and thylakoid membrane. The results obtained in this study indicated three important points: (1) the regulation level of each Spirulina desaturase gene is possibly subcellular location dependent; (2) GLA is important during cell division in the mid-log phase; and (3) vaccenic acid (C18:1Δ11), which is detected at high levels during the lag phase in the plasma membrane, might play a role in the mechanical strength of the cell membrane at low growth rates.

Keywords

Delta 9 desaturase Delta 12 desaturase Delta 6 desaturase Spirulina platensis Arthrospira Regulation Growth phase 

Notes

Acknowledgments

This research was funded by a grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand.

Supplementary material

10811_2012_9880_MOESM1_ESM.doc (105 kb)
Online Resource 1 Growth of S. platensis strain Z19/2 grown at 35 °C in Zarrouk’s medium under illumination by 100 μmol photons m−2 s−1 fluorescent light. (A) Samples were taken at various growth phases, shown by the solid arrows. (B) In the enlarged image, the solid arrow indicates the sampling point (DOC 102 kb)
10811_2012_9880_MOESM2_ESM.doc (3.2 mb)
Online Resource 2 GC profiles of total fatty acids in (A) plasma membrane, and (B) thylakoid membrane at various growth phases of S. platensis Z19/2 (DOC 3306 kb)

References

  1. Allakhverdiev S, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867PubMedCrossRefGoogle Scholar
  2. Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720PubMedGoogle Scholar
  3. Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S, Tabata S, Kaneko T, Chaijaruwanich J, Sangsrakru D, Tangphatsornruang S, Chanprasert J, Thongsima S, Kusolmano K, Jeamton W, Dulsawat S, Klanchui A, Vorapreeda T, Chumchua V, Khannapho C, Thammarongtham C, Plengvidhya V, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Meechai A, Senachak J, Tanticharoen M (2012) Draft genome sequence of Arthrospira platensis C1 (PCC9438). Stand Genomic Sci 6:43–53PubMedCrossRefGoogle Scholar
  4. Chintalapati S, Prakash JSS, Gupta P, Ohtani S, Suzuki I, Sakamoto T, Murata N, Shivaji S (2006) A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochem J 398:207–214PubMedCrossRefGoogle Scholar
  5. Cohen Z (1997) The chemicals of Spirulina. In: Vonshak A (ed) Spirulina (Arthrospira) platensis: physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 175–204Google Scholar
  6. Cohen Z, Margheri CM, Tomaselli L (1995) Chemotaxonomy of cyanobacteria. Phytochemistry 40:1155–1158CrossRefGoogle Scholar
  7. Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M (1993a) Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. J Appl Phycol 5:109–115CrossRefGoogle Scholar
  8. Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M, Heimer YM (1993b) Herbicide resistant lines of microalgae: growth and fatty acid composition. Phytochemistry 34:973–978CrossRefGoogle Scholar
  9. Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26:2255–2258CrossRefGoogle Scholar
  10. Colla LM, Bertolin TE, Costa JAV (2004) Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Z Naturforsch 59:55–59Google Scholar
  11. Coolbear KP, Berde CB, Keough KMW (1983) Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines. Biochemistry 22:1466–1473PubMedCrossRefGoogle Scholar
  12. Cossin AR (1994) Homeoviscous adaptaion of biological membranes and its functional significance. In: Cossin AR (ed) Temperature adaptation of biological membranes. Portland, London, pp 63–76Google Scholar
  13. Deshnium P, Paithoonrangsarid K, Suphatrakul A, Meesapyodsuk D, Tanticharoen M, Cheevadhanarak S (2000) Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Microbiol Lett 184:207–213PubMedCrossRefGoogle Scholar
  14. Fay L, Richli U (1991) Location of double bonds in polyunsaturated fatty acids by gas chromatography–mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 541:89–98CrossRefGoogle Scholar
  15. Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115:551–559PubMedGoogle Scholar
  16. Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89:9959–9963PubMedCrossRefGoogle Scholar
  17. Gravel P, Golaz O (1996) Protein blotting by the semi-dry method. In: Walker JM (ed) The protein protocols handbook. Humana, New Jersey, pp 249–260CrossRefGoogle Scholar
  18. Hongsthong A, Deshnium P, Paithoonrangsarid K, Cheevadhanarak S, Tanticharoen M (2003) Differential responses of three acyl-lipid desaturases to immediate temperature reduction occurring in two lipid membranes of Spirulina platensis strain C1. J Biosci Bioeng 96:519–524PubMedCrossRefGoogle Scholar
  19. Jeamton W, Mungpakdee S, Sirijuntarut M, Prommeenate P, Cheevadhanarak S, Tanticharoen M, Hongsthong A (2008) A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes. FEMS Microbiol Lett 281:121–131PubMedCrossRefGoogle Scholar
  20. Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744CrossRefGoogle Scholar
  21. Kis M, Zsiros O, Farkas T, Wada H, Nagy F, Gombos Z (1998) Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci USA 95:4209–4214PubMedCrossRefGoogle Scholar
  22. Lapage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396Google Scholar
  23. Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1934:13–15Google Scholar
  24. Lövenklev M, Holst E, Borch E, Rådström P (2004) Relative neurotoxin gene expression in Clostridium botulinum type B, determined using quantitative reverse transcription-PCR. Appl Environ Microbiol 70:2919–2927PubMedCrossRefGoogle Scholar
  25. Mary I, Tu C-J, Grossman A, Vaulot D (2004) Effects of high light on transcripts of stress-associated genes for the cyanobacteria Synechocystis sp. PCC 6803 and Prochlorococcus MED4 and MIT9313. Microbiology 150:1271–1281PubMedCrossRefGoogle Scholar
  26. Meechai A, Pongakarakun S, Deshnium P, Cheevadhanarak S, Bhumiratana S (2004) Metabolic flux distribution for γ-linolenic acid synthetic pathways in Spirulina platensis. Biotechnol Bioprocess Eng 9:506–513CrossRefGoogle Scholar
  27. Mühling M, Belay A, Whitton BA (2005) Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol 17:137–146CrossRefGoogle Scholar
  28. Murata N, Omata T (1988) Isolation of cyanobacterial plasma membranes. Methods Enzymol 167:245–251CrossRefGoogle Scholar
  29. Murata N, Suzuki I (2006) Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot 57:235–247PubMedCrossRefGoogle Scholar
  30. Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8PubMedGoogle Scholar
  31. Murphy DJ, Harwood JL, Lee KA, Roberto FR, Stumpf PK, St John JB (1985) Differential responses of a range of photosynthetic tissues to a substituted pyridazinone, Sandoz 9785. Specific effects on fatty acid desaturation. Phytochemistry 24:1923–1929CrossRefGoogle Scholar
  32. Niehus E, Ye F, Suerbaum S, Josenhans C (2002) Growth phase-dependent and differential transcriptional control of flagellar genes in Helicobacter pylori. Microbiology 148:3827–3837PubMedGoogle Scholar
  33. Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568PubMedCrossRefGoogle Scholar
  34. Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328CrossRefGoogle Scholar
  35. Routaboul J, Fischer SF, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperatures. J Plant Physiol 124:1697–1705CrossRefGoogle Scholar
  36. Sabersheikh S, Saunders NA (2004) Quantification of virulence-associated gene transcripts in epidemic methicillin resistant Staphylococcus aureus by real-time PCR. Mol Cell Probes 18:23–31PubMedCrossRefGoogle Scholar
  37. Sanangelantoni AM, Calogero RC, Butarelli FR, Gualerzi CO, Tiboni O (1990) Organization and nucleotide sequence of the genes for ribosomal protein S2 and elongation factor Ts in Spirulina platensis. FEMS Microbiol Lett 66:141–146CrossRefGoogle Scholar
  38. Shi L, North R, Gennaro ML (2004) Effect of growth state on transcription levels of genes encoding major secreted antigens of Mycobacterium tuberculosis in the mouse lung. Infect Immun 72:2420–2424PubMedCrossRefGoogle Scholar
  39. Shokri A, Sandén A, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392PubMedCrossRefGoogle Scholar
  40. Singh SC, Sinha RP, Häder DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308Google Scholar
  41. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  42. Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137PubMedCrossRefGoogle Scholar
  43. Tanticharoen M, Reungjitchachawali M, Boonag B, Vonktaveesuk P, Vonshak A, Cohen Z (1994) Optimization of γ-linolenic acid (GLA) production in Spirulina platensis. J Appl Phycol 6:295–300CrossRefGoogle Scholar
  44. Várkonyi Z, Zsiros O, Farkas T, Garab G, Gombos Z (2000) The tolerance of cyanobacterium Cylindrospermopsis raciborskii to low-temperature photo-inhibition affected by the induction of polyunsaturated fatty acid synthesis. Biochem Soc Trans 28:892–894PubMedCrossRefGoogle Scholar
  45. Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374PubMedCrossRefGoogle Scholar
  46. Vijayan P, Browse J (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. J Plant Physiol 129:876–885CrossRefGoogle Scholar
  47. Vonshak A, Chanawongse L, Bunnag B, Tanticharoen M (1995) Physiological characterization of Spirulina platensis isolates: response to light and salinity. Life Sci Adv Plant Physiol 14:161–166Google Scholar
  48. Zhang JY, Yu QT, Liu BN, Huang ZH (1988) Chemical modification in mass spectrometry IV. 2-Alkenyl-4,4-dimethyloxazolines as derivatives for double bond location of long-chain olefinic acids. Biomed Environ Mass Spectrom 15:33–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tippawan Mapaisansup
    • 3
  • Rayakorn Yutthanasirikul
    • 3
  • Apiradee Hongsthong
    • 1
  • Morakot Tanticharoen
    • 1
  • Marasri Ruengjitchatchawalya
    • 2
  1. 1.Biochemical Engineering and Pilot Plant Research and Development UnitNational Center for Genetic Engineering and BiotechnologyBangkokThailand
  2. 2.School of Bioresources and TechnologyKing Mongkut’s University of Technology ThonburiBangkokThailand
  3. 3.Pilot Plant Development and Training InstituteKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations