Journal of Applied Phycology

, Volume 24, Issue 6, pp 1547–1553 | Cite as

Isolation and analysis of a gene from the marine microalga Isochrysis galbana that encodes a lipase-like protein

  • Stéphanie Godet
  • Josiane Hérault
  • Gaëlle Pencreac’h
  • Françoise Ergan
  • Céline Loiseau


Microalgae constitute a novel study area for characterising new lipolytic enzymes of biotechnological interest. A new gene from the microalga Isochrysis galbana has been isolated and a preliminary characterisation performed. The full-length cDNA contains 2,060 base pairs with an open reading frame of 1,374 nucleotides encoding a polypeptide of 457 amino acids with a predicted molecular mass of 49 kDa, and a theoretical pI of 5.65. The deduced protein includes highly conserved motifs found in α/β fold hydrolases, and shares some similarities with putative or known lipases. Sequence comparison indicated that the catalytic triad corresponds to residues Ser188, Asp306 and His391, with the nucleophilic residue Ser188 positioned within the consensus G-X-S188-X-G pentapeptide. Phylogenetic analyses established close relationships with fungal lipases and microalgal sequences.


Alpha/beta hydrolases Isochrysis galbana Lipase Microalgae 



We thank Isabelle Martin and Rose-Marie Leroux for their technical assistance. This research received funding from “Laval Agglomération” and the “Conseil Général de la Mayenne”.


  1. Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494PubMedCrossRefGoogle Scholar
  2. Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol C Toxicol Pharmacol 146:60–78PubMedCrossRefGoogle Scholar
  3. Demir BS, Tükel SS (2010) Purification and characterization of lipase from Spirulina platensis. J Mol Catal B Enzym 64:123–128CrossRefGoogle Scholar
  4. Derewenda ZS, Derewenda U, Dodson GG (1992) The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 Å resolution. J Mol Biol 227:818–839PubMedCrossRefGoogle Scholar
  5. Devos M, Poisson L, Ergan F, Pencreac'h G (2006) Enzymatic hydrolysis of phospholipids from Isochrysis galbana for docosahexaenoic acid enrichment. Enzyme Microb Technol 39:548–554CrossRefGoogle Scholar
  6. Fujiwara S, Tsuzuki M, Kawashi M, Minaka N, Inouye I (2001) Molecular phylogeny of the haptophyta based on the rbcL gene and saquence variation in the spacer region of the RUBISCO operon. J Phycol 37:121–129CrossRefGoogle Scholar
  7. Gaskin DJH, Romojaro A, Turner NA, Jenkins J, Vulfson EN (2000) Alteration of lipase chain length specificity in the hydrolysis of esters by random mutagenesis. Biotechnol Bioeng 73:433–441CrossRefGoogle Scholar
  8. Godet S, Loiseau C, Pencreac'h G, Ergan F, Hérault J (2010) Isolation and sequence analysis of a cDNA encoding a novel putative esterase from the marine microalga Isochrysis galbana (Prymnesiophyceae, Haptophyta). J Phycol 46:679–684CrossRefGoogle Scholar
  9. Grant DM, Gillham NW, Boynton JE (1980) Inheritance of chloroplast DNA in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 77:6067–6071PubMedCrossRefGoogle Scholar
  10. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Tech 39:235–251CrossRefGoogle Scholar
  11. Holmquist M (2000) Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1:209–235PubMedCrossRefGoogle Scholar
  12. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676PubMedCrossRefGoogle Scholar
  13. Norin M, Haeffner F, Achour A, Norin T, Hult K (1994) Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa. Protein Sci 3:1493–1503PubMedCrossRefGoogle Scholar
  14. Pencreac'h G, Devos M, Poisson L, Herault J, Loiseau C, Ergan F (2004) Les microalgues marines: source alternative d'acide eicosapentaènoïque (EPA) et d'acide docosohexaènoïque (DHA). Oléagineux Corps gras Lipides 11:118–122Google Scholar
  15. Peters GH, Bywater RP (1999) Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase. Protein Eng 12:747–754PubMedCrossRefGoogle Scholar
  16. Peters GH, Bywater RP (2001) Influence of a lipid Interface on protein dynamics in a fungal lipase. Biophys J 81:3052–3065PubMedCrossRefGoogle Scholar
  17. Peters GH, Olsen OH, Svendsen A, Wade RC (1996) Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase. Biophys J 71:119–129PubMedCrossRefGoogle Scholar
  18. Poisson L, Ergan F (2001) Docosahexaenoic acid ethyl esters from Isochrysis galbana. J Biotechnol 91:75–81PubMedCrossRefGoogle Scholar
  19. Rubio-Rodriguez N, Beltran S, Jaime I, de Diego SM, Sanz MT, Rovira Carballido J (2010) Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innov Food Sci Emerg 11:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Stéphanie Godet
    • 1
  • Josiane Hérault
    • 2
  • Gaëlle Pencreac’h
    • 2
  • Françoise Ergan
    • 2
  • Céline Loiseau
    • 2
  1. 1.AGROCAMPUS OUEST, Centre d’Angers—Institut National d’Horticulture et de PaysageAngers Cedex 01France
  2. 2.EA 2160, Mer Molécules SantéUniversité du Maine, Institut Universitaire de Technologie de Laval, Département Génie BiologiqueLaval Cedex 09France

Personalised recommendations