Journal of Applied Phycology

, Volume 24, Issue 6, pp 1419–1426 | Cite as

Influence of temperature, light and nutrients on the growth rates of the macroalga Gracilaria domingensis in synthetic seawater using experimental design

  • Luiz Fernando Mendes
  • Luiz A. S. Vale
  • Aline Paternostro Martins
  • Nair Sumie Yokoya
  • Eliane Marinho-Soriano
  • Pio Colepicolo


In the present study, the daily relative growth rates (DRGR, in percent per day) of the red macroalga Gracilaria domingensis in synthetic seawater was investigated for the combined influence of five factors, i.e., light (L), temperature (T), nitrate (N), phosphate (P), and molybdate (M), using a statistical design method. The ranges of the experimental cultivation conditions were T, 18–26°C; L, 74–162 μmol photons m−2 s−1; N, 40–80 μmol L−1; P, 8–16 μmol L−1; and M, 1–5 nmol L−1. The optimal conditions, which resulted in a maximum growth rate of ≥6.4% d−1 from 7 to 10 days of cultivation, were determined by analysis of variance (ANOVA) multivariate factorial analysis (with a 25 full factorial design) to be L, 74 μmol photons m−2 s−1; T, 26°C; N, 80 μmol L−1; P, 8 μmol L−1; and M, 1 nmol L−1. In additional, these growth rate values are close to the growth rate values in natural medium (von Stosch medium), i.e., 6.5–7.0% d−1. The results analyzed by the ANOVA indicate that the factors N and T are highly significant linear terms, X L, (α = 0.05). On the other hand, the only significant quadratic term (X Q) was that for L. Statistically significant interactions between two different factors were found between T vs. L and N vs. T. Finally, a two-way (linear/quadratic interaction) model provided a quite reasonable correlation between the experimental and predicted DRGR values (R adjusted 2  = 0.9540).


Seaweed Rhodophyta Gracilariales Multivariate factorial analysis Factorial design Speciation 



Financial support of the present study was provided by INCT-Redoxoma and the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP 09/54718-4 (L.F.M.), Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq 143542/2008-7 (L.A.S.V.), and Capes (A.P.M.).

Supplementary material

10811_2012_9797_MOESM1_ESM.doc (114 kb)
ESM 1 (DOC 114 kb)


  1. Aparicio PJ, Quiñones MA (1991) Blue light, a positive switch signal for nitrate and nitrite uptake by the green alga Monoraphidium braunii. Plant Physiol 95:374–378PubMedCrossRefGoogle Scholar
  2. Berges JA, Cochlan WP, Harrison PJ (1995) Laboratory and field responses of algal nitrate reductase to diel periodicity in irradiance, nitrate exhaustion, and the presence of ammonium. Mar Ecol Prog Ser 124:259–269CrossRefGoogle Scholar
  3. Berges JA, Frankilin D, Harrison PJ (2001) Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J Phycol 37:1138–1145CrossRefGoogle Scholar
  4. Blust R, Verheyen E, Doumen C, Decleir W (1986) Effect of complexation by organic ligands on the bioavailability of copper to the Brine Shrimp, Artemia sp. Aquat Toxicol 8:211–221CrossRefGoogle Scholar
  5. Cardozo KHM, Guaratini T, Barros MP, Falcão VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P, Pinto E (2007) Metabolites from algae with economical impact. Comp Biochem Physiol 146:60–78CrossRefGoogle Scholar
  6. Cardozo KHM, Marques LG, Cravalho VM, Carignan MO, Pinto E, Marinho-Soriano E, Colepicolo P (2011) Analyses of photoprotective compounds in red algae from the Brazilian coast. Rev Bras Farmacogn 21:202–208CrossRefGoogle Scholar
  7. Cole JJ, Howarth RW, Nolan SS, Marino R (1986) Sulfate inhibition of molybdate assimilation by planktonic algae and bacteria: some implications for the aquatic nitrogen cycle. Biogeochemistry 179:179–196CrossRefGoogle Scholar
  8. Collén PN, Collén J, Reis MS, Pedersén M, Setubal JC, Varani AM, Colepicolo P, Oliveira MC (2011) Analysis of expressed sequence tags from the agarophyte Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol doi: 10.1007/s10811-011-9681-4
  9. Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266CrossRefGoogle Scholar
  10. Falcão VR, Tonon AP, Oliveira MC, Colepicolo P (2008) RNA Isolation method for polysaccharide rich algae: agar producing Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 20:9–12CrossRefGoogle Scholar
  11. Falcão VR, Mariana C, Oliveira MC, Colepicolo P (2010) Molecular characterization of nitrate reductase gene and its expression in the marine red alga Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol 22:613–622CrossRefGoogle Scholar
  12. Fargosova A (1998) Accumulation and toxic effects of Cu2+, Cu+, Mn2+, Vo43-, Ni2+, and MoO42- and their associations: influences on respiratory rate and chlorophyll a con tent the Green alga Scenedesmus quadricauda. J Trace Microprobe Tech 16:481–490Google Scholar
  13. Gao Y, Smith GJ, Alberte RS (1992) Light regulation of nitrate reductase in Ulva fenestrata (Chlorophyceae). Mar Biol 112:691–696CrossRefGoogle Scholar
  14. Goupy J, Creighton L (2007) Introduction to design of experiments: with JMP® examples. SAS Institute Inc., CaryGoogle Scholar
  15. Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Filho JM, Torres RP, Pinto E (2010) Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120:585–590CrossRefGoogle Scholar
  16. Gressler V, Fujii MT, Martins AP, Colepicolo P, Filho JM, Pinto E (2011) Biochemical composition of two red seaweed species grown on the Brazilian coast. J Sci Food Agric 91:1687–1692PubMedCrossRefGoogle Scholar
  17. Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Elsevier, London, pp 21–33Google Scholar
  18. Hershey DR (1991) Plant light measurement and calculation. Am Biol Teach 53:351–353CrossRefGoogle Scholar
  19. Iwasaki H (1961) The life-cycle of Porphyra tenera in vitro. Biol Bull 121:173–187CrossRefGoogle Scholar
  20. Kakita H, Kamishima H (2006) Effects of environmental factors and metal ions on growth of the red alga Gracilaria chorda Holmes (Gracilariales, Rhodophyta). J Appl Phycol 18:469–474CrossRefGoogle Scholar
  21. Kaladharan P (2000) Artificial seawater for seaweed culture. Indian J Fish 47:257–259Google Scholar
  22. Lee KS, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175CrossRefGoogle Scholar
  23. Lewicki P, Hill T (2005) Statistics: methods and applications. Statsoft, TulsaGoogle Scholar
  24. Mendes LF, Bastos EL, Desjardin DE, Stevani CV (2008) Influence of culture conditions on mycelial growth and bioluminescence of Gerronema viridilucens. FEMS Microbiol Lett 282:132–139PubMedCrossRefGoogle Scholar
  25. Murano E (1995) Chemical structure and quality of agar from Gracilaria. J Appl Phycol 7:245–254CrossRefGoogle Scholar
  26. Oliveira EC, Plastino EM (1994) Gracilariaceae. In: Akatsuka I (ed) Biology of economic algae. SSB Academic, The Hague, pp 185–226Google Scholar
  27. Pinto E, Van Nieuwerburgh L, Barros MP, Pedersén M, Colepicolo P, Snoeijs P (2003) Density-dependent patterns of thiamine and pigments in production in Nitzschia microcephala. Phytochemistry 63:155–163PubMedCrossRefGoogle Scholar
  28. Raikar SV, Iima M, Fujita Y (2001) Effect of temperature, salinity and intensity on the growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian J Mar Sci 30:98–104Google Scholar
  29. Rossa MM, Oliveira MM, Okamoto OK, Lopes PF, Colepicolo P (2002) Effect of visible light on superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J Appl Phycol 14:151–157CrossRefGoogle Scholar
  30. Sigaud-Kutner TCS, Pinto E, Okamoto OK, Latorre LR, Colepicolo P (2002) Changes in superoxide dismutase activity and photosynthetic pigment content during growth of marine phytoplankters in batch-cultures. Physiol Plant 114:566–572PubMedCrossRefGoogle Scholar
  31. Steentoft M, Farham WF (1997) Northern distribution boundaries and thermal requirements of Gracilaria and Gracilariopsis (Gracilariales, Rhodophyta) in Atlantic Europe and Scandinavia. Nord J Bot 5:87–93CrossRefGoogle Scholar
  32. Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box-Behnken experimental design. J Hazard Mat 171:551–562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Luiz Fernando Mendes
    • 1
  • Luiz A. S. Vale
    • 2
  • Aline Paternostro Martins
    • 1
  • Nair Sumie Yokoya
    • 3
  • Eliane Marinho-Soriano
    • 4
  • Pio Colepicolo
    • 1
  1. 1.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  3. 3.Instituto de BotânicaNúcleo de Pesquisa em FicologiaSão PauloBrazil
  4. 4.Departamento de Oceanografia e LimnologiaUniversidade Federal do Rio Grande do NorteNatalBrazil

Personalised recommendations