Advertisement

Journal of Applied Phycology

, Volume 24, Issue 3, pp 427–432 | Cite as

Extract powder from the brown alga Ascophyllum nodosum (Linnaeus) Le Jolis (AMPEP): a “vaccine-like” effect on Kappaphycus alvarezii (Doty) Doty ex P.C. Silva

  • Rafael Rodrigues Loureiro
  • Renata Perpetuo Reis
  • Flávia Diniz Berrogain
  • Alan T. Critchley
Article

Abstract

The benefits of using Acadian Marine Plant Extract Powder (AMPEP), obtained from the brown algae Ascophyllum nodosum, for improving growth of the red alga Kappaphycus alvarezii has been demonstrated by authors in the Philippines and Brazil, particularly for increasing daily growth rate and mitigation of epiphytes. However, the processes which occur have not been discussed. This study examined in vitro the relationship between those red algal defense mechanisms and K. alvarezii responses using AMPEP treatments. The administration of the extract reduced the effects of the oxidative burst (production of hydrogen peroxide) which may be extremely aggressive for an individual and its epiphyte. The bleaching of the non-corticated portions of Polysiphonia subtilissima thalli that were cultivated as simulated epiphytes with AMPEP samples confirmed that the reaction was evident in which AMPEP protected K. alvarezii from the hydrogen peroxide effects. It is proposed that the use of the brown seaweed powder AMPEP acts as a potential vaccine, eliciting activation of the red seaweed K. alvarezii natural defenses against pathogens and ameliorating the negative effects of long-term exposure to oxidative bursts.

Keywords

Kappaphycus alvarezii Improving productivity Brown seaweed powder AMPEP Red algal defense mechanisms Biotechnology Epiphytes 

Notes

Acknowledgments

This work was supported by FAPERJ, CAPES, and CNPq. The authors would like to thank Acadian Seaplants Limited for providing the AMPEP, Ondas Biomar Cultivo de Algas Ltda. for providing K. alvarezii samples, Dr. Jonas Collén for the critical reviews in the early stages of this work and Dr. Lynn Cornish for providing a number of references used in the discussion.

References

  1. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  2. Blunden G, Currie M, Máthé I, Hohmann J, Critchley A (2009) Variation in betaine yields from marine algal species commonly utilized in the preparation of seaweed extracts used in agriculture. The Phycol 76:14Google Scholar
  3. Borlongan IAG, Tibudos KR, Yunque DAT, Hurtado AQ, Critchley AT (2011) Impact of AMPEP on the growth and occurrence of epiphytic Neosiphonia infestation on two varieties of commercially cultivated Kappaphycus alvarezii grown at different depths in the Philippines. J Appl Phycol 23:615–621CrossRefGoogle Scholar
  4. Cordeiro RA, Gomes MV, Carvalho AFU, Melo VMM (2006) Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) Lamouroux on the growth of human pathogen yeasts. Braz Arch Biol Techn 49:915–921CrossRefGoogle Scholar
  5. Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393CrossRefGoogle Scholar
  6. Fan D (2010) Ascophyllm nodosum extracts improve shelf life and nutritional quality of spinach (Spinacia oleracea L.). Dissertation, Dalhousie UniversityGoogle Scholar
  7. Gachon CMM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640PubMedCrossRefGoogle Scholar
  8. Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol-Prog Ser 409:267–299CrossRefGoogle Scholar
  9. Góes HG, Reis RP (2011) An initial comparison of tubular netting versus tie–tie methods of cultivation for Kappaphycus alvarezii (Rhodophyta, Solieriaceae) on the south coast of Rio de Janeiro State, Brazil. J Appl Phycol 23:607–613CrossRefGoogle Scholar
  10. Guiry MD, Guiry GM (2011) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 10 June 2011
  11. Hurtado AQ, Critchley AT, Bleicher-Lhonneur G (2006) Occurrence of Polysiphonia epiphytes in Kappaphycus farms at Calaguas Island., Camarines Norte, Philippines. J Appl Phycol 18:301–306CrossRefGoogle Scholar
  12. Hurtado AQ, Yunque DA, Tibudos K, Critchley AT (2009) Use of Acadian marine plant extract powder from Ascophyllum nodosum in tissue culture of Kappaphycus varieties. J Appl Phycol 21:633–639CrossRefGoogle Scholar
  13. Jayaraj J, Wan A, Rahman M, Punja ZK (2008) Seaweed extract reduces foliar fungal diseases on carrots. Crop Prot 27:1360–1366CrossRefGoogle Scholar
  14. Jayaraman J, Norrie J, Punja ZK (2011) Commercial extract from the brown seaweed Ascophyllum nodosum reduces diseases in greenhouse cucumber. J Appl Phycol 23:353–361CrossRefGoogle Scholar
  15. Khan W, Palanisamy R, Hankins SD, Critchley AT, Smith DL, Papadopoulos Y, Prithiviraj B (2008) Ascophyllum nodosum (L.) Le Jolis extract improves root nodulation in alfalfa. Can J Plant Sci 88:728–728Google Scholar
  16. Khan W, Rayirath UP, Subramanian UP, Jitesh MN, Rayorath P, Hodges DM, Critchley DM, Craigie JS, Norrie J, Prithiviraj B (2009) Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28:386–399CrossRefGoogle Scholar
  17. Kladi M, Vagias C, Roussis V (2004) Volatile halogenated metabolites from marine red algae. Phytochem 3:337–366CrossRefGoogle Scholar
  18. Klarzynski O, Plesse B, Joubert J-M, Yvin J-C, Kopp M, Kloareg B, Fritig B (2000) Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol 124:1027–1037PubMedCrossRefGoogle Scholar
  19. Largo DB, Fukami F, Nishijima T (1995a) Occasional bacteria promoting ice-ice disease in the carrageenan-producing red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:545–554CrossRefGoogle Scholar
  20. Largo DB, Fukami F, Nishijima T, Olino M (1995b) Laboratory-induced development of the ice-ice disease of the farmed red algae Kappaphycus alvarezii and Eucheuma denticulatum (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 7:539–543CrossRefGoogle Scholar
  21. Largo DB, Fukami K, Adachi M, Nishijima T (1997) Direct enumeration of total bacteria from macroalgae by epifluorescence microscopy as applied to the fleshy red algae Kappaphycus alvarezii and Gracilaria spp. (Rhodophyta). J Phycol 33:554–557CrossRefGoogle Scholar
  22. Largo DB, Fukami MAK, Nishijima T (1998) Immuno fluorescent detection of ice-ice disease-promoting bacterial strain Vibrio sp. P11 of the farmed macroalga, Kappaphycus alvarezii (Gigartinales, Rhodophyta). J Mar Biotech 6:178–182Google Scholar
  23. Loureiro RR, Reis RP, Critchley AT (2010) In vitro cultivation of three Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) variants (green, red and brown) exposed to a commercial extract of the brown alga Ascophyllum nodosum (Fucaceae, Ochrophyta). J Appl Phycol 22:101–104CrossRefGoogle Scholar
  24. Mackinnon SL, Hiltz D, Ugarte R, Craft CA (2010) Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J Appl Phycol 22:489–494CrossRefGoogle Scholar
  25. Mtolera MSP, Collén J, Pedersén M, Ekdahl A, Abrahamsson K, Semesi AK (1996) Stress-induced production of volatile halogenated organic compounds in Eucheuma denticulatum (Rhodophyta) caused by elevated pH and high light intensities. Eur J Phycol 31:89–95CrossRefGoogle Scholar
  26. Parys S, Kehraus S, Pete R, Kupper FC, Glombitza KW, Konig GW (2009) Seasonal variation of polyphenolics in Ascophyllum nodossum (Phaeophyceae). Eur J Phycol 44:331–338CrossRefGoogle Scholar
  27. Pedersén M, Collén J, Abrahamsson K, Ekdahl A (1996a) Production of halocarbons from seaweeds: an oxidative stress reaction? Sci Mar 60:257–263Google Scholar
  28. Pedersén M, Collén J, Abrahamsson K, Mtolera M, Semesi A, Garcia Reina G (1996b) The ice-ice disease and oxidative stress of marine algae. In: Björk M, Semesi AK, Pedersén M, Bergman B (eds) Current trends in marine botanical research in the East African region. Ord & Vetande AB, Uppsala, Sweden, pp 11–24Google Scholar
  29. Pickering T (2006) Advances in seaweed aquaculture among Pacific Island countries. J Appl Phycol 18:227–234CrossRefGoogle Scholar
  30. Potín P, Bouarab K, Salaün J-P, Pohnert G, Kloareg B (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5(4):308–317PubMedCrossRefGoogle Scholar
  31. Reis RP, Yoneshigue-Valentin Y, Santos CP (2008) Spatial and temporal variation of Hypnea musciformis carrageenan (Rhodophyta-Gigartinales) from natural beds in Rio de Janeiro State, Brazil. J Appl Phycol 20:1–8CrossRefGoogle Scholar
  32. Reitz SR, Trumble JT (1996) Cytokinin-containing seaweed extract does not reduce damage by an insect herbivore. Hortscience 31:102–105Google Scholar
  33. Salisbury FB, Ross CW (1992) Plant physiology. Wadsworth, California, p 234Google Scholar
  34. Solis MJL, Draeger S, Cruz TEE (2010) Marine-derived fungi from Kappaphycus alvarezii and K. striatum as potential causative agents of ice-ice disease in farmed seaweeds. Bot Mar 53:587–594CrossRefGoogle Scholar
  35. Vairappan CS (2006) Seasonal occurrences of epiphytic algae on the commercially cultivated red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta). J Appl Phycol 18:611–617CrossRefGoogle Scholar
  36. Vairappan CS, Chung CS, Hurtado AQ, Soya FE, Bleicher-Lhonneur G, Critchley A (2008) Distribution and symptoms of epiphyte infection in major carrageenophyte producing farms. J Appl Phycol 20:477–483CrossRefGoogle Scholar
  37. Vairappan CS, Anangdan SP, Tan KL, Matsunaga S (2010) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305–311CrossRefGoogle Scholar
  38. Weinberger F (2007) Pathogen-induced defense and innate immunity in macroalgae. Biol Bull 213:290–302PubMedCrossRefGoogle Scholar
  39. Weinberger F, Potin P (2010) Red algal defenses in the genomics age. In: Chapman DJ, Seckbach J (eds) Red algae in the genomic age, 1st edn. Springer, New York, pp 457–472CrossRefGoogle Scholar
  40. Weinberger F, Friedlander M, Hoppe HG (1999) Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophyta). J Phycol 35:747–755CrossRefGoogle Scholar
  41. Weinberger F, Richard C, Kloareg B, Kashman Y, Hoppe HG, Friedlander M (2001) Structure–activity relationships of oligoagar elicitors toward Gracilaria conferta (Rhodophyta). J Phycol 37:418–426CrossRefGoogle Scholar
  42. Whapham CA, Blunden G, Jenkins T, Hankins SD (1993) Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J Appl Phycol 5:231–234CrossRefGoogle Scholar
  43. Yokoya NS, Stirk WA, van Staden J, Novák O, Turecková V, Pňnčík A, Strnad M (2010) Endogenous cytokinins, auxins, and abscisic acid in read algae from Brazil. J Phycol 46:1198–1205CrossRefGoogle Scholar
  44. Yunque DAT, Tibudos KR, Hurtado AQ, Critchley AT (2011) Optimization of culture conditions for tissue culture production of young plantlets of carrageenophyte Kappaphycus. J Appl Phycol 23:433–438CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rafael Rodrigues Loureiro
    • 1
  • Renata Perpetuo Reis
    • 1
  • Flávia Diniz Berrogain
    • 1
  • Alan T. Critchley
    • 2
  1. 1.Instituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Acadian Seaplants LimitedDartmouthCanada

Personalised recommendations