Journal of Applied Phycology

, Volume 23, Issue 3, pp 537–542 | Cite as

Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh

  • Enrique Hernández-Garibay
  • Jose A. Zertuche-González
  • Isai Pacheco-Ruíz


In order to obtain information on the content and composition of the water-soluble polysaccharides from Ulva clathrata, an extraction at 60°C, in different media, was performed: water, EDTA and HCl (F-I), each followed by a sequential extraction in NaOH 0.1 M (F-II). The extracts were recovered and analyzed for total carbohydrates, proteins, rhamnose, uronic acids and sulfate content. Differences were obtained in the yield and composition in both fractions of the different media (F-I and F-II). Higher yields resulted in the first fraction on all media. HCl extraction was the best in both fractions (14.83 ± 1.5% and 5.96 ± 1.1%, F-I and F-II, respectively). In all cases, F-I was more sulfated ranging from 27.87% to 35.8% and higher in rhamnose content, whereas F-II had higher protein and slightly higher uronic acid content. FTIR spectra showed that soluble polysaccharides from the green seaweed U. clathrata are sulfated polysaccharides, similar to ulvan obtained from other Ulva species and confirmed by the 1 H-NMR spectrum, where the characteristic signal for the deoxy sugar (rhamnose) is present.


Green seaweeds Rhamnose Sulfated polysaccharides Ulva clathrata Uronic acids 



The authors acknowledge the support of the Universidad Autónoma de Baja California and the Instituto Nacional de Pesca y Acuacultura. This research was partially financed by the project UABC-CA 0603 granted to J.A. Zertuche-González. The FTIR facility and the H-NMR spectra were provided by Irma E. Soria-Mercado at FCM-UABC. This study is part of a Ph.D. thesis (EHG), thanks to CONACYT by the scholarship provided. Special thanks to anonymous reviewers whose remarks helped to improve this paper.


  1. Abdel-Fattah AF, Edrees M (1973) Seasonal changes in the constituents of Ulva lactuca. Phytochemistry 12:481–485CrossRefGoogle Scholar
  2. Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334PubMedCrossRefGoogle Scholar
  3. Borowitzka MA (1972) Intertidal algal species diversity and the effects of pollution. Aust J Mar Freshw Res 25:73–84CrossRefGoogle Scholar
  4. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–255PubMedCrossRefGoogle Scholar
  5. Castro R, Piazzon MC, Zarra I, Leiro J, Noya M, Lamas J (2006) Stimulation of turbot phagocytes by Ulva rigida C. Agardh polysaccharides. Aquaculture 254:9–20CrossRefGoogle Scholar
  6. Colliec S, Boisson-Vidal C, Jozefonvicz J (1994) A low molecular weight fucoidan from the brown seaweed Pelvetia canaliculata. Phytochemistry 35:697–700CrossRefGoogle Scholar
  7. Colthup NB (1950) Spectra–structure correlations in the infra-red region. J Opt Soc Am 40:397–400CrossRefGoogle Scholar
  8. Craigie JS, Wen ZC (1984) Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can J Bot 62:665–1670CrossRefGoogle Scholar
  9. Cruz-Suárez LE, Tapia-Salazar M, Nieto-López MG, Guajardo-Barbosa C, Ricque-Marie D (2009) Comparison of Ulva clathrata and the kelps Macrocystis pyrifera and Ascophyllum nodosum as ingredients in shrimp feeds. Aqua Nutr 15:421–430CrossRefGoogle Scholar
  10. Dubois M, Gibs KA, Hamilton JK, Rebers DA, Smith F (1956) Colorimetric methods for the determination of sugars and related substances. Anal Chem 28:350–352CrossRefGoogle Scholar
  11. Haug A (1964) In: Report No. 30, Norwegian Institute of Seaweed Research (1964) Trondheim, Norway. 2. A. Linker and RS Jones. Nature 204:187Google Scholar
  12. Indergaard M, Minsaas J (1991) Animal and human nutrition. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. Wiley, New York, pp 21–64Google Scholar
  13. Lahaye M (2001) Chemistry and physico-chemistry of phycocolloids. Cah Biol Mar 42:137–157Google Scholar
  14. Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8:1765–1774PubMedCrossRefGoogle Scholar
  15. Lahaye M, Alvarez-Cabal CE, Kuhlenkamp R, Quemener B, Lognone’ V, Dion P (1999) Chemical composition and 13C NMR spectroscopic characterization of ulvans from Ulva (Ulvales, Chlorophyta). J Appl Phycol 11:1–7CrossRefGoogle Scholar
  16. Lloyd AG, Dodgson KS, Price RG, Rose FAI (1961) Infrared studies on sulphate esters. I. Polysaccharide sulphates. Biochim Biophys Acta 46:108–115PubMedCrossRefGoogle Scholar
  17. Mao W, Zang X, Li Y, Zhang H (2006) Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J Appl Phycol 18:9–14CrossRefGoogle Scholar
  18. Medcalf DG, Root CF, Craney CL, Mukhopadhyay D, Miller CK, Hopewell WD (1972) Chemical characterization of mucilaginous polysaccharides from Ulvaceae species native to the Puget Sound. In: Nisizawa K (ed) Proceeding of the Seventh Int Seaweed Symp. Univ Tokyo Press, Tokyo, pp 541–547Google Scholar
  19. Medcalf DG, Lionel T, Brannon JH, Scott JR (1975) Seasonal variation in the mucilaginous polysaccharides from Ulva lactuca. Bot Mar 18:67–70CrossRefGoogle Scholar
  20. Nisizawa K, Noda H, Kikuchi R, Watanabe T (1987) The main seaweed foods in Japan. Hydrobiologia 151(152):5–29CrossRefGoogle Scholar
  21. Percival E (1964) Polysaccharides of the green seaweeds Ulva lactuca and Enteromorpha compressa. Proc Int Seaweed Symp 4:360–365Google Scholar
  22. Percival E, McDowell RH (1967) Chemistry and enzymology of marine algal polysaccharides. Academic, London, pp 157–164Google Scholar
  23. Pereira MS, Mulloy B, Mourão PAS (1999) Structure and anticoagulant activity of sulfated fucans: comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J Biol Chem 274(12):7656–7667PubMedCrossRefGoogle Scholar
  24. Rao CNR (1967) Chemical applications of infrared spectroscopy. Academic, New York, pp 260–262Google Scholar
  25. Ray B, Lahaye M (1995) Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta). Extraction and chemical composition. Carbohydr Res 274:251–261CrossRefGoogle Scholar
  26. Rinaudo M (2006) Polysaccharides. Kirk-Othmer encyclopedia of chemical technology, vol 20, 5th edn. Wiley, New York, pp 549–586Google Scholar
  27. Robic A (2008) Etude de la variabilité chimique, physico-chimique et rhéologique des ulvanes, polysaccharides des parois cellulaires d’algues marines vertes de la famille des Ulves (Ulvales, Chlorophyta). Ph.D. thesis, Nantes University, Nantes, FranceGoogle Scholar
  28. Robic A, Sassi JF, Lahaye M (2008) Impact of stabilization treatment of the green seaweed Ulva rotundata (Chlorophyta) on the extraction yield, the physico-chemical and rheological properties of ulvan. Carbohydr Polym 74:344–352CrossRefGoogle Scholar
  29. Robic A, Bertrand D, Sassi JF, Lerat Y, Lahaye M (2009a) Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. J Appl Phycol 21:451–456CrossRefGoogle Scholar
  30. Robic A, Gaillard C, Sassi JF, Lerat Y, Lahaye M (2009b) Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers 91:652–664PubMedCrossRefGoogle Scholar
  31. Robic A, Sassi J-F, Dion P, Lerat Y, Lahaye M (2009c) Seasonal variability of physico-chemical and rheological properties of ulvan from two Ulva species (Chlorophyta) of Brittany coast. J Phycol 45:962–973CrossRefGoogle Scholar
  32. Tabatabai MA (1974) Determination of sulfate in water samples. J Sulphur Inst 10:11–13Google Scholar
  33. Teichberg M, Fox MT, Olsen YO, Valiela I, Martinetto P, Iribarne O, Muto EY, Petti MAV, Corbisier TN, Soto-Jiménez M, Páez-Osuna F, Castro P, Freitas H, Zitelli A, Cardinaletti M, Tagliapietra D (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Change Biol 16:2624–2637Google Scholar
  34. You L, Liu Q, Shi Y, Wang CX, Lahaye M, Tran V (1997) The conformational study of β-d-GlcA-(1, 4)-l-Rha in solution by NMR and molecular dynamics simulations. Chem Phys 224:81–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Enrique Hernández-Garibay
    • 1
    • 2
    • 3
  • Jose A. Zertuche-González
    • 2
  • Isai Pacheco-Ruíz
    • 2
  1. 1.Facultad de Ciencias MarinasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  2. 2.Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico
  3. 3.Centro Regional de Investigación Pesquera de EnsenadaInstituto Nacional de Pesca y AcuaculturaEnsenadaMexico

Personalised recommendations