Advertisement

Journal of Applied Phycology

, Volume 22, Issue 6, pp 725–731 | Cite as

Refining cryptophyte identification: matching cell fixation methods to FISH hybridisation of cryptomonads

  • Linda K. Medlin
  • Sabine Strieben
Article

Abstract

The Division Cryptophyta, Class Cryptophyceae, contains ecologically important microalgae that are found in all aquatic habitats. The identification of the Cryptophyta is challenged by a need to examine species in the scanning electron microscope or transmission electron microscope to visualise features needed to identify its species. Molecular verification is becoming increasingly important for this group because of its polymorphic haploid and diploid cells of the same species with different morphologies. Thus, for routine monitoring programmes, this group is not usually identified beyond the level of class and that is done only if the samples are routinely examined with a fluorescent microscope or with flow cytometry, and the cryptophytes are counted based on the natural orange fluorescent of their phycobilin pigments. In order to use rRNA probes, the cells must be fixed for permeabilisation of the cell membrane for probe penetration. Here, we present a test of routine fixation methods to determine the fixation that is most compatible for use in fluorescent in situ hybridisation methods with fluorescent microscopy and flow cytometer to facilitate cryptomonad identification.

Keywords

Cryptophytes Fixation methods Flow cytometry FISH hybridisation 

References

  1. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl Environ Microbiol 56:1919–1925PubMedGoogle Scholar
  2. Andersen RA, Morton SL, Sexton JP (1997) CCMP—Provasoli-Guillard National Center for Culture of Marine Phytoplankton. J Phycol 33(Suppl):1–75CrossRefGoogle Scholar
  3. Biegala IC, Not F, Vaulot D, Simon N (2003) Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification–fluorescence in situ hybridization and flow cytometry. Appl Environ Microbiol 69:5519–5529CrossRefPubMedGoogle Scholar
  4. Cerino F, Zingone A (2006) A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur J Phycol 41:363–378CrossRefGoogle Scholar
  5. Clay BL, Kugrens P, Lee RE (1999) A revised classification of the Cryptophyta. Bot J Linn Soc 131:131–151Google Scholar
  6. Deere D, Shen J, Vesey G, Bell P, Bissinger P, Veal D (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14:147–160CrossRefPubMedGoogle Scholar
  7. Eppley RW, Holmes RW, Strickland JDH (1967) Sinking rates of the marine phytoplankton measured with a fluorochromometer. J Exp Mar Biol Ecol 1:191–208CrossRefGoogle Scholar
  8. Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726PubMedGoogle Scholar
  9. Godhe A et al (2007) Intercalibration of classical and molecular techniques for identification of Alexandrium fundyense (Dinophyceae) and estimation of cell densities. Harmful Algae 6:56–72CrossRefGoogle Scholar
  10. Groben R, Medlin LK (2005) In situ hybridization of phytoplankton using fluorescently-labelled rRNA probes. In: Zimmer EA, Roalson E (eds) Methods in enzymology. Elsevier, San Diego, pp 299–310Google Scholar
  11. Hoef-Emden K, Marin B, Melkonian M (2002) Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55:161–179CrossRefPubMedGoogle Scholar
  12. Hoef-Emden K, Marin B, Melkonian M (2003) Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154:371–409CrossRefPubMedGoogle Scholar
  13. Lange M, Simon N, Guillou L, Vaulot D, Amann R, Ludwig W, Medlin LK (1996) Identification of the Class Prymnesiophyceae and the genus Phaeocystis with rRNA-targeted nucleic acid probes detected by flow cytometry. J Phycol 32:858–868CrossRefGoogle Scholar
  14. Li WKW, Dickie PM (2001) Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry 44:236–246CrossRefPubMedGoogle Scholar
  15. Marin B, Klingberg M, Melkonian M (1998) Phylogenetic relationships among the Cryptophyta: analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist 149:265–276CrossRefGoogle Scholar
  16. Medlin LK, Schmidt K (2010) Molecular probes improve the taxonomic resolution of cryptophyte abundance in Arcachon Bay. Vie et Milieu (in press)Google Scholar
  17. Metfies K, Medlin LK (2007) Refining cryptophyte identification with DNA-microarrays. J Plankton Res 29:1071–1076CrossRefGoogle Scholar
  18. Metfies K, Berzano M, Mayer C, Roosken P, Gualerzi C, Medlin L, Muyzer G (2007) An optimised protocol for the identification of diatoms, flagellated algae and pathogenic protozoa with phylochips. Mol Ecol Notes 7:925–936CrossRefGoogle Scholar
  19. Metfies K, Gescher C, Frickenhaus S, Niestroy R, Wichels A, Gerdts G, Knefelkamp B, Wiltshire K, Medlin LK (2010) Contribution of the Class Cryptophyceae to phytoplankton structure in the German Bight. J Phycol (in press)Google Scholar
  20. Miller PE, Scholin CA (1996) Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species specific LSU rRNA targeted fluorescent probes. J Phycol 32:646–655CrossRefGoogle Scholar
  21. Miller PE, Scholin CA (2000) On detection of Pseudo-nitzschia (Bacillariophyceae) species using whole cell hybridization: sample fixation and stability. J Phycol 36:238–250CrossRefGoogle Scholar
  22. Takahashi Y, Takishita K, Koike K, Maruyama T, Nakayama T, Kobiyama A, Takehiko Ogata T (2005) Development of molecular probes for Dinophysis (Dinophycean) plastid: a tool to predict blooming and explore plastid origin. Mar Biotechnol 7:95–103CrossRefPubMedGoogle Scholar
  23. Throndsen J (1978) Preservation and storage. In: Sournia A (ed) Phytoplankton manual. UNESCO, Paris, pp 69–74Google Scholar
  24. Töbe K, Ferguson C, Kelly M, Gallacher S, Medlin LK (2001) Seasonal occurrence at a Scottish PSP monitoring site of purportedly toxic bacteria originally isolated from the toxic dinoflagellate genus Alexandrium. Eur J Phycol 36:243–256Google Scholar
  25. Töbe K, Eller G, Medlin LK (2006) Automated detection and enumeration for toxic algae by solid-phase cytometry and the introduction of a new probe for Prymnesium parvum (Haptophyta: Prymnesiophyceae). J Plankton Res 28:643–657CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratoire AragoObservatoire Océanologique de Banyuls-sur-merBanyuls-sur-MerFrance
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations