Journal of Applied Phycology

, Volume 21, Issue 4, pp 405–412 | Cite as

Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis

  • Lamia Trabelsi
  • Hatem Ben Ouada
  • Hassen Bacha
  • Mohamed Ghoul


The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.


Arthrospira platensis Extracellular polymeric substance production Growth rate Light intensity Response surface methodology Spirulina Temperature 


  1. Cohen Z, Reungjitchachawali M, Angdung W, Tanticharoen M (1993) Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. J Appl Phycol 5:109–115CrossRefGoogle Scholar
  2. Cornet JF, Dussap CG, Dubertret GA (1992) Structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics. Biotechnol Bioeng 40:817–825PubMedCrossRefGoogle Scholar
  3. Costa JAV, Colla LM, Duarte Filho PF, Kabke K, Weber A (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607CrossRefGoogle Scholar
  4. De Philippis R, Vincenzini M (1998) Exocellular polysaccharide from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175CrossRefGoogle Scholar
  5. Deshnium P, Paithoonrangsarid K, Suphatrakul A, Meesapyodsuk D, Tanticharoen M, Cheevadhanarak S (2000) Temperature-independent and dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthospira sp.PCC 9438). FEMS Microbiol Lett 184:207–213PubMedCrossRefGoogle Scholar
  6. Dueñas M, Munduate A, Perea A, Irastorzaet A (2003) Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidifined medium under different growth conditions. Int J Food Microbiol 87:113–120PubMedCrossRefGoogle Scholar
  7. Estrada JE, Besco’s P, Villar Del Fresno AM (2001) Antioxidant activity of different fractions of Spirulina platensis protean extract. Il Farmaco 56:497–500CrossRefGoogle Scholar
  8. Filali Mouhim R, Cornet JF, Fontaine T, Fournet B, Dubertret G (1993) Production, isolation and preliminary characterisation of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol Lett 15:567–572CrossRefGoogle Scholar
  9. Herms DA, Mattson WJ (1992) The dilemma of plants grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  10. Kim D, Pendersen H, Chin CK (1988) Effects of light on berberine production in cell suspension cultures of Thalictrum rugosu. Biotech Lett 10:709–712Google Scholar
  11. Kumar SS, Chaubey RC, Devasagayam TPA, Priyadarsini KI, Chauhan PS (1999) Inhibition of radiation-induced DNA damage in plasmid pBR322 by chlorophyllin and possible mechanism of action. Mutation Res 425:71–79PubMedGoogle Scholar
  12. Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochem 52:639–647CrossRefGoogle Scholar
  13. Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102:143–152PubMedCrossRefGoogle Scholar
  14. Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol 97:1822–1827PubMedCrossRefGoogle Scholar
  15. Shohael AM, Ali MB, Yu KW, Hahn EJ, Islam R, Paek KY, Alonso D, Maroto F (2000) Plant as chemical factories’ for the production of polyunsaturated fatty acids. Biotechnol Adv 18:481–497CrossRefGoogle Scholar
  16. Taiz L, Zeiger E (1998) Photosynthesis: physiological and ecological considerations. In: Taiz L, Zeiger E (eds) Plant physiology. Sinauer, Sunderland, MA, pp 227–249Google Scholar
  17. Tseng CT, Zhao Y (1994) Extraction, purification and identification of polysaccharides of Spirulina (Arthrospira) platensis (Cyanophyceae). Alg Stud 75:303–312Google Scholar
  18. Vonshak A (1997) Spirulina: growth, physiology and biochemistry. In: Vonshak A (ed) Spirulina platensis (Arthrospira): Physiology, Cell-biology and biotechnology. Taylor and Francis, London, pp 43–66Google Scholar
  19. Wingender J, Neu RT, Flemming H-C (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu RT, Flemming H-C (eds) Microbiol extracellular polymeric substances characterization, structure and function. Springer, Berlin, pp 1–13Google Scholar
  20. Wolfstein K, Stal LJ (2002) Production of extracellular polymeric substances (EPS) by benthic diatoms: effect of irradiance and temperature. Mar Ecol Prog Ser 236:13–22CrossRefGoogle Scholar
  21. Yim HJ, Kim SJ, Ahn SH, Lee HK (2003) Optimal conditions for the production of sulphated polysaccharide by marine microalga Gyrodinium impudicum strain KG 03. Biomolec Eng 20:273–280CrossRefGoogle Scholar
  22. Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima Geitler. PhD Thesis, University of ParisGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lamia Trabelsi
    • 1
  • Hatem Ben Ouada
    • 1
  • Hassen Bacha
    • 2
  • Mohamed Ghoul
    • 3
  1. 1.Laboratoire de Biodiversité et de Biotechnologie MarineInstitut National des Sciences et Technologies de la MerMonastirTunisia
  2. 2.Laboratoire de Recherches sur les Substances Biologiquement Compatibles Faculté de Medecine DentaireMonastirTunisia
  3. 3.Laboratoire de Bioprocédés AgroalimentairesVendoeuvre-les-NancyFrance

Personalised recommendations