Journal of Applied Phycology

, Volume 20, Issue 5, pp 737–742 | Cite as

Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp.

  • Y. Kitaya
  • L. Xiao
  • A. Masuda
  • T. Ozawa
  • M. Tsuda
  • K. Omasa


Symbiotic dinoflagellates of the species Amphidinium are expected to be pharmaceutically useful microalgae because they produce antitumor macrolides. A microalgae production system with a large number of cells at a high density has been developed for the efficient production of macrolide compounds. In the present study, the effects of culture conditions on the cellular growth rate of dinoflagellates were investigated to determine the optimum culture conditions for obtaining high yields of microalgae. Amphidinium species was cultured under conditions with six temperature levels (21–35°C), six levels of photosynthetic photon flux density (15–70 μmol photons m−2 s−1), three levels of CO2 concentration (0.02–0.1%), and three levels of O2 concentration (0.2–21%). The number of cells cultured in a certain volume of solution was monitored microscopically and the cellular growth rate was expressed as the specific growth rate. The maximum specific growth rate was 0.022 h−1 at a temperature of 26°C and O2 concentration of 5%, and the specific growth rate was saturated at a CO2 concentration of 0.05%, a photosynthetic photon flux density of 35 μmol photons m−2 s−1 and a photoperiod of 12 h day−1 upon increasing each environmental parameter. The results demonstrate that Amphidinium species can multiply efficiently under conditions of relatively low light intensity and low O2 concentration.


Algae Amphidinium sp. Photosynthetic photon flux density Specific growth rate Symbiotic dinoflagellate Temperature 



This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.


  1. Baek SH, Shimode S, Kikuchi T (2008) Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay. Harmful Algae 7:163–173CrossRefGoogle Scholar
  2. Bauer I, Maranda L, Shimizu Y, Peterson RW, Cornell L, Steiner JR, Clardy J (1994) The structures of amphidinolide B isomers: strongly cytotoxic macrolides produced by a free-swimming dinoflagellate Amphidinium sp. J Am Chem Soc 116:2657–2658CrossRefGoogle Scholar
  3. Dixon GK, Syrett PJ (1988) The growth of dinoflagellates in laboratory cultures. New Phytol 109:297–302CrossRefGoogle Scholar
  4. Ishibashi M, Ohizumi Y, Hamashima M, Nakamura H, Hirata Y, Sasaki T, Kobayashi J (1987) Amphidinolide B, a novel macrolide with potent antineoplastic activity from the marine dinoflagellate Amphidinium sp. J Chem Soc Chem Commun 1987:1127–1129Google Scholar
  5. Kitaya Y, Kibe S, Oguchi M, Tanaka H, Miyatake H, Nakano Y (1998) Effects of CO2 and O2 concentration and light intensity on growth of microalgae (Euglena gracilis) in CELSS. Life Support Biosphere Sci 5:243–247Google Scholar
  6. Kitaya Y, Azuma H, Kiyota M (2005) Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae. Euglena gracilis. Adv Space Res 35:1584–1588PubMedCrossRefGoogle Scholar
  7. Kobayashi J, Tsuda M (2004) Amphininolides, bioactive macrolides from symbiotic marine dinoflagellate. Nat Prod Rep 21:77–93PubMedCrossRefGoogle Scholar
  8. Kobayashi J, Kubota T (2007) Bioactive macrolides and polyketides from marine dinoflagellates of the genus Amphidinium. J Nat Prod 70:451–460PubMedCrossRefGoogle Scholar
  9. Kobayashi J, Ishibashi M, Nakamura H, Ohizumi Y, Yamasu T, Hirata Y, Sasaki T, Ohta T, Nozoe S (1989) Cytotoxic macrolides from a cultured marine dinoflagellate of the genus Amphidinium. J Nat Prod 52:1036–1041PubMedCrossRefGoogle Scholar
  10. Kobayashi J, Shigemori H, Ishibashi M, Yamasu T, Hirota H, Sasaki T (1991) Amphidinolies H and G, new potent cytotoxic macrolides from the cultured symbiotic dinoflagellate Amphidinium sp. J Org Chem 56:5221–5224CrossRefGoogle Scholar
  11. Kobayashi J, Shimbo K, Sato M, Shiro M, Tsuda M (2000) Absolute stereochemistry of amphidinolides G and H. Org Lett 2:2805–2807PubMedCrossRefGoogle Scholar
  12. Oguchi K, Tsuda M, Iwamoto R, Okamoto Y, Endo T, Kobayashi J, Ozawa T, Masuda A (2007) Amphidinolides B6 and B7, cytotoxic macrolides from a symbiotic dinoflagellate Amphidinium species. J Nat Prod 70:1676–1679Google Scholar
  13. Provasoli L (1963) Growing marine seaweeds. Proceedings of the 4th International Seaweed Symposium. Pergamon, Oxford, pp 9–17Google Scholar
  14. Tsuda M, Oguchi K, Iwamoto R, Okamoto Y, Kobayashi J, Fukushi E, Kawabata J, Ozawa T, Masuda A, Kitaya Y, Omasa K (2007a) Iriomoteolide-1a, a potent cytotoxic 20-membered macrolide from a benthic dinoflagellate Amphidinium species. J Org Chem 72:4469–4474PubMedCrossRefGoogle Scholar
  15. Tsuda M, Oguchi K, Iwamoto R, Okamoto Y, Fukushi E, Kawabata J, Ozawa T, Masuda A (2007b) Iriomoteolides-1b and 1c, 20-membered macrolides from a marine dinoflagellate Amphidinium species. J Nat Prod 70:1661–1663PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Y. Kitaya
    • 1
  • L. Xiao
    • 1
  • A. Masuda
    • 2
  • T. Ozawa
    • 2
  • M. Tsuda
    • 3
  • K. Omasa
    • 4
  1. 1.Osaka Prefecture UniversitySakaiJapan
  2. 2.Yanmar Co.KunisakiJapan
  3. 3.Kochi UniversityKochiJapan
  4. 4.The University of TokyoTokyoJapan

Personalised recommendations