Molecular characterization of four genes involved in sulfur metabolism in Porphyra purpurea (Roth) C. Agardh

  • Subhash C. Minocha
  • Matt Hunt
  • Dennis E. Mathews


Sulfated polysaccharides (carrageenans and agars) are among the most important products of red algae that are used as food additives as well as in molecular biology research. The quality and value of the product is greatly dependent on the levels and sites of sulfation of the polysaccharides. Little information is currently available on the molecular details of sulfur metabolism in red algae. Considering the economic importance of sulfated polysaccharide, elucidating the molecular details of sulfur metabolism in these organisms could help in future endeavors to improve algal commercial value, e.g., through genetic engineering. A cDNA library from the red alga Porphyra purpurea (Roth) C. Agardh was used to isolate four cDNAs with homology to genes encoding known sulfur assimilation enzymes: sulfate adenyltransferase (ATP sulfurylase), adenosine 5′-phosphosulfate kinase (APSK), sulfite reductase, and cysteine synthase. These cDNAs were characterized with respect to their molecular properties and a cDNA with homology to APSK was used to functionally complement an Escherichia coli auxotroph APSK mutant. The other cDNAs are being similarly characterized with respect to their ability to produce functional enzymes. Elucidation of the regulation of expression of these genes will aid in future research to determine the biochemical and genetic details of the sulfate assimilation pathway as well as its genetic manipulation in red algae.


Carrageenan cDNA library Porphyra Red algae Sulfate assimilation 



Adenosine 5′-phosphosulfate


APS kinase


APS reductase


ATP sulfurylase


Cysteine synthase












Sulfate adenyltransferase


Serine acetyltransferase


Sulfite reductase





We thank Dr. Estelle Hrabak for her expert advice in several protocols, Troy Bray for providing Porphyra yezoensis tissue, and the Yale E. coli stock center for providing the JM81A E. coli auxotroph strains. The help of Dr. Andrew Laudano and his students was invaluable for the western blot analysis, and the staff at the UNH Hubbard Center for DNA sequencing. This project was partially funded by the UNH Marine Program and the Center for Marine Biology.


  1. Aketagawa J, Tamura G (1980) Ferredoxin-sulfite reductase from spinach. Agric Biol Chem 44:2371–2378Google Scholar
  2. Arz H, Gisselmann G, Schiffmann S, Schwenn J (1994) A cDNA for adenylyl sulphate (APS)-kinase from Arabidopsis thaliana. Biochim Biophys Acta 1218:447–452PubMedGoogle Scholar
  3. Asamizu E, Nakajima M, Kitade Y, Saga N, Nakamura Y, Tabata S (2003) Comparison of RNA Expression profiles between the two generations of Porphyra yezoensis (Rhodophyta), based on Expressed Sequence Tag Frequency Analysis. J Phycol 39:923–930Google Scholar
  4. Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11:251–262PubMedCrossRefGoogle Scholar
  5. Bolchi A, Petrucoo S, Tenca P, Forani C, Ottonello S (1999) Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by l-cysteine. Plant Mol Biol 39:527–537PubMedCrossRefGoogle Scholar
  6. Bowman K, Bertozzi C (1999) Carbohydrate sulfotransferases: mediators of extracellular communication. Chem Biol 6:R9–R22PubMedCrossRefGoogle Scholar
  7. Brimblecombe P, Hammer C, Rohde H, Ryaboshapko A, Boulron CF (1989) Human influence on the sulphur cycle. In: Brimblecombe P, Lein AY (eds) Evolution of the global biogeochemical sulphur cycle. Wiley, ChichesterGoogle Scholar
  8. Brühl A, Haverkamp T, Gisselmann G, Schwenn JD (1996) A cDNA clone from Arabidopsis thaliana encoding plastidic ferredoxin:sulfite reductase. Biochem Biophys Acta 1295:119–124PubMedGoogle Scholar
  9. Burkhard P, Rao G, Hohenester E, Schnackerz K, Cook P, Jansonius J (1998) Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 283:121–133PubMedCrossRefGoogle Scholar
  10. Clarkson D, Diogo E, Amâncio S (1999) Uptake and assimilation of sulphate by sulphur deficient Zea mays cells: the role of O-acetyl-l-serine in the interaction between nitrogen and sulphur assimilatory pathways. Plant Physiol Biochem 37:283–290CrossRefGoogle Scholar
  11. Cosson J, Deslandes E, Zinoun M, Mouradi-Givernaud A (1995) Carrageenans and agars, red algal polysaccharides. Prog Phycol Res 11:269–324Google Scholar
  12. Craigie J (1990) Cell walls. In: Cole M, Sheath R (eds) Biology of the red algae. Cambridge University Press, New York, pp 241–242Google Scholar
  13. Crane B, Siegel L, Getzoff E (1995) Sulfite reductase structure at 1.6 Å: evolution and catalysis for reduction of inorganic anions. Science 270:59–67PubMedCrossRefGoogle Scholar
  14. Crawford N, Kahn M, Leustek T, Long S (2000) Nitrogen and sulfur. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 786–849Google Scholar
  15. Driscoll CT, Driscoll KM, Mitchell MJ, Raynal DJ (2003) Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ Pollution 123:327–336CrossRefGoogle Scholar
  16. Droux M, Ruffet M, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants: structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245PubMedCrossRefGoogle Scholar
  17. Eschenbrenner M, Covès J, Fontecave M (1995) NADPH-sulfite reductase flavoprotein from Echerichia coli: contribution to the flavin content and subunit interaction. FEBS Lett 374:82–84PubMedCrossRefGoogle Scholar
  18. Fujimori Y, Nakamura K, Tamura G (1991) Cysteine synthase from a red alga Porphyra yezoensis: purification and properties. Jpn J Phycol 39:7–14Google Scholar
  19. Gao Y, Schofield M, Leustek T (2000) Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase. Plant Physiol 123:1087–1096PubMedCrossRefGoogle Scholar
  20. Giordano M, Norici A, Hell R (2005) Sulfur and phytoplankton: acquisition, metabolism and impact on the environment. New Phytol 166:371–382PubMedCrossRefGoogle Scholar
  21. Gisselmann G, Klausmeier P, Schwenn J (1993) The ferredoxin: sulfite reductase gene from Synechococcus PCC7942. Biochim Biophys Acta 1144:102–106PubMedCrossRefGoogle Scholar
  22. Gutierrez-Marcos J, Roberts M, Campell E, Wray J (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS-reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc Natl Acad Sci USA 93:13377–13382PubMedCrossRefGoogle Scholar
  23. Hanfrey C, Franceschetti M, Mayer MJ, Illingworth C, Michael AJ (2002) Abrogation of upstream open reading frame-mediated translational control of a plant S-adenosylmethionine decarboxylase results in polyamine disruption and growth perturbations. J Biol Chem 277:44131–44139PubMedCrossRefGoogle Scholar
  24. Hatzfeld Y, Lee S, Lee M, Leustek T, Soito K (2000) Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Gene 248:51–58PubMedCrossRefGoogle Scholar
  25. Hawkesford M (2003) Transporter gene families in plants: the sulphate transporter gene family—redundancy or specialization? Physiol Plant 117:155–163CrossRefGoogle Scholar
  26. Hell R, Bork C, Bogdanova N, Frolov I, Hauschild R (1994) Isolation and characterization of two cDNAs encoding for compartment specific isoforms of O-acetylyserine (thiol) lyase from Arabidopsis thaliana. FEBS Lett 351:257–262PubMedCrossRefGoogle Scholar
  27. Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22:245–257PubMedCrossRefGoogle Scholar
  28. Higgins C (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113PubMedCrossRefGoogle Scholar
  29. Hirai M, Fujiwara T, Awazuhara M, Kimura T, Noji M, Soito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutriton. Plant J 33:651–663PubMedCrossRefGoogle Scholar
  30. Howarth J, Roberts M, Wray J (1997) Cysteine biosynthesis in higher plants: a new member of the Arabidopsis thaliana serine acetyltransferase small gene-family obtained by functional complementation of an Escherichia coli cysteine auxotroph. Biochim Biophys Acta 1350:123–127PubMedGoogle Scholar
  31. Hunt M (2003) Genes of sulfur assimilation in Porphyra purpurea (MSc thesis). University of New Hampshire, Durham, NHGoogle Scholar
  32. Ikeda M, Moritani C (1994) Roles of anions in cells: studies on a Cl(−)-translocating ATPase and sulfate uptake system in Acetabularia acetabulum. Yakugaku Zasshi 114:539–549PubMedGoogle Scholar
  33. Inoue K, Noji M, Saito K (1999) Determination of the sites required for the allosteric inhibition of serine acetyltranferase by l-cysteine in plants. Eur J Biochem 266:220–227PubMedCrossRefGoogle Scholar
  34. Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford M, Hell R (2000) Genomic and functional characterization of the oas gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253:237–247PubMedCrossRefGoogle Scholar
  35. Khurana O, Coupland L, Shelden M, Howitt S (2000) Homologous mutations in two diverse sulphate transporters have similar effects. FEBS Lett 477:118–122PubMedCrossRefGoogle Scholar
  36. Koguchi O, Tamura G (1988) Ferredoxin-sulfite reductase from a cyanobacterium, Spirulina platensis. Agric Biol Chem 52:373–380Google Scholar
  37. Koguchi O, Tamura G (1989) Isolation and partial characterization of homogeneous ferredoxin-sulfite reductase from a red alga, Porphyra yezoesnsis. Agric Biol Chem 53:1653–1662Google Scholar
  38. Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495PubMedCrossRefGoogle Scholar
  39. Kopriva S, Koprivova A (2004) Plant adenosine 5′-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55:1775–1783PubMedCrossRefGoogle Scholar
  40. Kredich N (1996) Biosynthesis of cysteine. In: Neidhardt F, Curtiss R, Ingraham J, Lin E, Low K, Magasanik B, Reznikoff W, Riley M, Schaechter M, Umbarger H (eds) Echerichia coli and Salmonella: cellular and molecular biology. AMS, Washington, DC, pp 514–527Google Scholar
  41. Krone F, Westphal G, Schwenn J (1991) Characterisation of the gene cysH and its product phospho-adenylylsulphate reductase from Echerichia coli. Mol Gen Genet 225:314–319PubMedCrossRefGoogle Scholar
  42. Kurima K, Singh B, Schwartz N (1999) Genomic organization of the mouse and human genes encoding the ATP sulfurylase/adenosine 5′-phosphosulfate kinase isoform SK2. J Biol Chem 274:33306–33312PubMedCrossRefGoogle Scholar
  43. Lappartient A, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2− uptake in intact canola: the role of phloem-translocated glutathione. Plant Physiol 111:147–157PubMedGoogle Scholar
  44. Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165PubMedCrossRefGoogle Scholar
  45. Leustek T, Murrillo M, Cervantes M (1994) Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol 105:897–902PubMedCrossRefGoogle Scholar
  46. Leyh T, Taylor J, Markham G (1988) The sulfate activation locus of Escherichia coli K12: cloning, genetic, and enzymatic characterization. J Biol Chem 263:2409–2416PubMedGoogle Scholar
  47. Leyh T, Vogt T, Suo Y (1992) The DNA sequence of the sulfate activation locus from Escherichia coli K12. J Biol Chem 267:10405–10410PubMedGoogle Scholar
  48. Lillig C, Prior A, Schwenn J, Åslund F, Ritz D, Vlamis-Gardikas A, Holmgren A (1999) New thioredoxins and glutaredoxins as electron donars of 3′-phosphoadenylylsulfate reductase. J Biol Chem 274:7695–7698PubMedCrossRefGoogle Scholar
  49. Lillig C, Schiffmann S, Berndt C, Berken A, Tischka R, Schwenn J (2001) Molecular and catalytic properties of Arabidopsis thaliana adenylyl sulfate (APS)-kinase. Arch Biochem Biophys 392:303–310PubMedCrossRefGoogle Scholar
  50. MacRae I, Rose A, Segel I (1998) Adenosine 5′-phosphosulfate kinase from Penicillium chrysogenum: site-directed mutagenesis at putative phosphoryl-accepting and ATP P-loop residues. J Biol Chem 273:28583–28589PubMedCrossRefGoogle Scholar
  51. MacRae I, Segel I, Fisher A (2000) Crystal structure of adenosine 5′-phosphosulfate kinase from Penicillium chrysogenum. Biochemistry 39:1613–1621PubMedCrossRefGoogle Scholar
  52. McCandless E (1981) Polysaccharides of the seaweeds. In: Lobban C, Wynne M (eds) The biology of seaweeds. University of California Press, Los Angeles, pp 559–588Google Scholar
  53. McRee D, Richardson D, Richardson J, Siegel L (1986) The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase. J Biol Chem 261:10277–10281PubMedGoogle Scholar
  54. Mino K, Hiraoka K, Imamura K, Sakiyama T, Eisaki N, Matsuyama A (2000) Characteristics of serine acetyltransferase from Escherichia coli deleting different lengths of amino acid residues from the C-terminus. Biosci Biotechnol Biochem 64:1874–1880PubMedCrossRefGoogle Scholar
  55. Mitman G, van der Meer J (1994) Meiosis, blade development, and sex determination in Porphyra purpurea (rhodophyta). J Phycol 30:147–159CrossRefGoogle Scholar
  56. Murillo M, Leustek T (1995) Adenosineo-5′-triphosphate-sulfurylase from Arabidopsis thaliana and Echerichia coli are functionally equivalent but structurally and kinetically divergent: nucleotide sequence of two adenosine-5′-triphosphate-sulfurylase cDNAs from Arabidopsis thaliana and analysis of a recombinant enzyme. Arch Biochem Biophys 323:195–204PubMedCrossRefGoogle Scholar
  57. Nakamura T, Yamaguchi Y, Sano H (1999) Four rice genes encoding cysteine synthase: isolation and differential responses to sulfur, nitrogen and light. Gene 229:155–161PubMedCrossRefGoogle Scholar
  58. Nakayama M, Akashi T, Hase T (2000) Plant sulfite reductase: molecular sturcture, catalytic function and interaction with ferredoxin. J Inorg Biochem 82:27–32PubMedCrossRefGoogle Scholar
  59. Nelson W, Brodie J, Guiry M (1999) Terminology used to describe reproduction and life history stages in the genus Porphyra (bangiales, rhodophyta). J Appl Phycol 11:407–410CrossRefGoogle Scholar
  60. Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 Expressed Sequence Tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7:223–227PubMedCrossRefGoogle Scholar
  61. Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276:73–81PubMedCrossRefGoogle Scholar
  62. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15CrossRefGoogle Scholar
  63. Rao G, Mottonen J, Goldsmith E, Cook P (1993) Crystallization and preliminary X-ray data for the A-isozyme of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 231:1130–1132PubMedCrossRefGoogle Scholar
  64. Ravina C, Barrosa C, Vega J, Gotor C (1999) Cysteine biosynthesis in Chlamydomonas reinhardtii. Eur J Biochem 264:848–853PubMedCrossRefGoogle Scholar
  65. Ravina C, Chang C-I, Tsakraklides GP, McDermott JP, Vega JM, Leustek T, Gotor C, Davies JP (2002) The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis. Plant Physiol 130:2076–2084PubMedCrossRefGoogle Scholar
  66. Roberts M, Wray J (1996) Cloning and characterization of an Arabidopsis thaliana cDNA clone encoding an organellar isoform of serine acetyltransferase. Plant Mol Biol 30:1041–1049PubMedCrossRefGoogle Scholar
  67. Rocha de Souza MC, Marques CT, Dore CMG, Ferreira da Silva FR, Rocha FAO, Leite EL (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19:153–160CrossRefPubMedGoogle Scholar
  68. Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5′-adenylylsulfate reductase during ontogenesis of arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715–724PubMedCrossRefGoogle Scholar
  69. Ruffet M, Lebrun M, Droux M, Douce R (1995) Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur J Biochem 227:500–509PubMedCrossRefGoogle Scholar
  70. Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195PubMedGoogle Scholar
  71. Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450PubMedCrossRefGoogle Scholar
  72. Saito K, Inoue K, Fukushima R, Noji M (1997) Genomic structure and expression analysis of serine acetyltransferase gene in Citrullus vulgaris (watermelon). Gene 189:57–63PubMedCrossRefGoogle Scholar
  73. Satishchandran C, Markham G (1989) Adenosine-5′-phosphosulfate kinase from Escherichia coli K12: purification, characterization, and identification of a phosphorylated enzyme intermediate. J Biol Chem 264:15012–15021PubMedGoogle Scholar
  74. Satishchandran C, Hickman Y, Markham G (1992) Characterization of the phosphorylated enzyme intermediate formed in the adenosine 5′-phosphosulfate kinase reaction. Biochemistry 31:11684–11688PubMedCrossRefGoogle Scholar
  75. Sato Y, Kanno N, Sato M (1987) Activation of sulphate in red alga Porphyra yezoensis. Kitasato Arch Exp Med 60:25–32PubMedGoogle Scholar
  76. Schiffmann S, Schwenn J (1994) APS-sulfotransferase activity is identical to higher plant APS-kinase (EC FEBS Lett 355:229–232PubMedCrossRefGoogle Scholar
  77. Smith F, Ealing P, Hawkesford M, Clarkson D (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377PubMedCrossRefGoogle Scholar
  78. Smith F, Hawkesford M, Ealing P, Clarkson D, Vanden-Berg P, Belcher A, Warrilow A (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12:875–884PubMedCrossRefGoogle Scholar
  79. Smith F, Rae A, Hawkesford M (2000) Molecular mechanisms of phosphate and sulfphate transport in plants. Biochim Biophys Acta 1465:236–245PubMedCrossRefGoogle Scholar
  80. Takagi H, Awano N, Kobayashi S, Noji M, Asoito K, Nakamori S (1999) Overproduction of l-cysteine and l-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana and Escherichia coli. FEBS Lett 179:453–459Google Scholar
  81. Takahashi H, Saito K (1996) Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur. Plant Physiol 112:273–280PubMedCrossRefGoogle Scholar
  82. Takahashi H, Asanuma W, Saito K (1999) Cloning of an Arabidopsis cDNA encoding a chloroplast localizing sulphate transporter isoform. J Exp Bot 50:1713–1714CrossRefGoogle Scholar
  83. Takahashi S, Sakata T, Tamura G (1996a) Ferredoxin-linked sulfite reductase from turnip roots. Biosci Biotechnol Biochem 60:142–144CrossRefGoogle Scholar
  84. Takahashi H, Sasakura N, Masaaki N, Saito K (1996b) Isolation and characterization of a cDNA encoding a sulfate transporter from Arabidopsis thaliana. FEBS Lett 392:95–99PubMedCrossRefGoogle Scholar
  85. Toda K, Takano H, Miyagishima S, Kuroiwa H, Kuroiwa T (1998) Characterization of a chloroplast isoform of serine acetyltransferase from the thermo-acidiphilic red alga Cyanidioschyzon merolae. Biochim Biophys Acta 1403:72–84PubMedCrossRefGoogle Scholar
  86. Toda K, Takano H, Nazaki H, Kuroiwa T (2001) The second acetyltransferase, bacterial-type O-acetylserine (thiol) lyase and eukaryotic-type O-acetylserine (thiol) lyase from the primative red alga Cyanidioschyzon merolae. J Plant Res 114:291–300CrossRefGoogle Scholar
  87. Ullrich T, Blaesse M, Huber R (2001) Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate assimilation. EMBO J 20:316–329PubMedCrossRefGoogle Scholar
  88. Urano Y, Manabe T, Joji M, Saito K (2000) Molecular cloning and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in Allium tuberosum. Gene 257:269–277PubMedCrossRefGoogle Scholar
  89. Varin L, Marsolais F, Richard M, Rouleau M (1997) Biochemistry and molecular biology of plant sulfotranferases. FASEB J 11:517–525PubMedGoogle Scholar
  90. Vidmar J, Tagmount A, Cathala N, Touraine B, Davidian J (2000) Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Lett 475:65–69PubMedCrossRefGoogle Scholar
  91. Yildiz F, Davies J, Grossman A (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104:981–987PubMedGoogle Scholar
  92. Yildiz F, Davies J, Grossman A (1996) Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii. Plant Physiol 112:669–675PubMedCrossRefGoogle Scholar
  93. Yonekura-Sakakibara K, Ashikari T, Tanaka Y, Kusumi T, Hase T (1998) Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and expression analysis. J Biochem (Tokyo) 124:615–621Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Subhash C. Minocha
    • 1
  • Matt Hunt
    • 1
  • Dennis E. Mathews
    • 1
  1. 1.Department of Plant BiologyUniversity of New HampshireDurhamUSA

Personalised recommendations