Journal of Applied Phycology

, Volume 20, Issue 2, pp 169–175 | Cite as

Agar properties of two species of Gracilariaceae from the Gulf of California, Mexico

  • Javier Orduña-Rojas
  • Karla Y. García-Camacho
  • Priscila Orozco-Meyer
  • Rafael Ríosmena-Rodríguez
  • Isaí Pacheco-Ruiz
  • José A. Zertuche-González
  • Alf E. Meling-López


Agar properties of two potentially commercial important seaweeds from the Gulf of California were studied. Maximum yield in Gracilaria vermiculophylla (45.7%) occurred during the summer months, coinciding with high water temperatures (31°C) whereas minimum yields (11.6%) were obtained during the coldest months of the year when populations of this species diminish in the bay. Gracilariopsis longissima showed two yield peaks, one in spring and another in fall, before the maximum and minimum seawater temperatures. Gel strength in native agar from the two species was low (<22.5 g cm−2) for most of the year. G. vermiculophylla native agar showed a slight increase in gel strength from June to August, which were the hottest months. Maximum value was 85 g cm−1 in August. Maximum gel strength in G. longissima was observed in October (91 g cm−1), and an unusual native agar with no detectable gel strength was observed in March and April samples. Gelling temperatures range from 27.7 to 36.5°C in G. vermiculophyla and from 26.6 to 34.9°C in G. longissima, meanwhile melting points were 73.9 – 53.5°C and 75.5 – 56.6°C, respectively. Sulfate content was high, 6.3–13.9% in G. vermiculophylla and 1.9–11.9% in G. longissima, and on the other hand 3,6 anhydrogalactose content was low 12.1–26.7% and 9.1–23%, respectively compared to other species. Results obtained showed that mean native agar yields of Gracilaria vermiculophylla and Gracilariopsis longissima from the Gulf of California are comparable to other tropical Gracilaria. However, the low gel strength, high sulfate content and low 3,6 anhydrogalactose content observed in the native agar extracted from these species make this an agaroid, thus alternative methods of extraction should be used to evaluate the possibility of commercial utilization of both species.


Agarophytes Gracilariopsis longissima Gracilaria vermiculophylla Seaweeds 


3, 6


3, 6




This study was supported by CGPI Grant 2004 0268 and CECyT-Sinaloa. J. O-R acknowledges to COFAA and SIP-IPN economic support. We thank the anonymous reviewers for their valuable comments and suggestions that improved this paper.


  1. Aguilar-Rosas R, Cruz-Campas ME, Trujillo-Ortiz A (2000) Crecimiento de Gracilaria pacifica (Rhodophyta) en el estero de Punta Banda, Baja California, Mexico. Hidrobiologica 10:74–79Google Scholar
  2. Alvarez-Borrego S (1983) Gulf of California. In: Ketchum BH (ed) Estuaries and enclosed seas. Elsevier, Amsterdam, pp 427–449Google Scholar
  3. Arellano-Carbajal F, Pacheco-Ruiz I, Correa-Díaz F (1999) Seasonal variation in agar yield and quality of Gracilariopsis lemaneiformis (Bory) Dawson, Acleto et Foldvik, from the Gulf of California, Mexico. Cienc Mar 25:51–62Google Scholar
  4. Armisen R (1995) World-wide use and importance of Gracilaria. J Appl Phycol 7:231–243CrossRefGoogle Scholar
  5. Armisen R, Galatas F (1987) Production, properties and uses of agar. In: McHugh DJ (ed) Production and utilization of products from commercial seaweeds. FAO Fish Tech Pap 288:1–44Google Scholar
  6. Bellorin, AM, Oliveira, MC, Oliveira EC (2004). Gracilaria vermiculophylla: a Western Pacific species of Gracilariaceae (Rhodophyta) first recorded from the Eastern Pacific. Phycol Res 52:69–79CrossRefGoogle Scholar
  7. Bird KT, Hinson TK (1992) Seasonal variations in agar yields and quality from North Carolina agarophytes. Bot Mar 35:291–295Google Scholar
  8. Craigie JS (1990) Cell wall. In: Cole KM, Sheat RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 221–257Google Scholar
  9. Craigie JS, Wen ZC (1984) Effects of temperature and tissue age on gel strength and composition of agar from Gracilaria tikvahiae (Rhodophyceae). Can J Bot 62:1665–1670CrossRefGoogle Scholar
  10. Espinoza-Avalos J (1993) Macroalgas Marinas del Golfo de California. In: Salazar-Vallejo SI, González NE (eds) Biodiversidad Marina y Costera de México. Com. Nal. Biodiversidad y CIQRO. Mexico, pp 328–357Google Scholar
  11. Espinoza-Avalos J, Hernandez-Garibay E, Zertuche-Gonzalez JA, Meave del Castillo ME (2003) Agar from two coexisting species of Gracilaria (Gracilariaceae) from the Mexican Caribbean. Cienc Mar 29:211–228Google Scholar
  12. Freile-Pelegrin Y (2000) Does storage time influence yield and agar properties in the tropical agarophyte Gracilaria cornea? J Appl Phycol 12:153–158CrossRefGoogle Scholar
  13. Freile-Pelegrin Y, Murano E (2005) Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour Technol 96:295–302PubMedCrossRefGoogle Scholar
  14. Freile-Pelegrin Y, Robledo D (1997) Effects of season on the agar content and chemical characteristics of Gracilaria cornea from Yucatan, Mexico. Bot Mar 40:285–290Google Scholar
  15. Friedlander M, Zelikovitch N (1984) Growth rates, phycocolloid yield and quality of the red seaweeds, Gracilaria sp., Pterocladia capillacea, Hypnea musciformis, and Hypnea cornuta, in field studies in Israel. Aquaculture 40:57–66CrossRefGoogle Scholar
  16. Gurgel CFD, Liao LM, Fredericq S, Hommersand MH (2003) Systematics of Gracilariopsis (Gracilariales, Rhodophyta) based on rbcL sequence analyses and morphological evidence. J Phycol 39:154–167CrossRefGoogle Scholar
  17. Jackson GS, McCandless LE (1978) Simple, rapid turbidimetric determination of inorganic sulfate and/or protein. Anal Biochem 90:802–808PubMedCrossRefGoogle Scholar
  18. Kim DH, Henriquez NP (1979) Yields and gel strengths of agar from cystocarpic and tetraspoic plants of Gracilaria verrucosa (Florideophyceae). Proc Int Seaweed Symp IX:257–262Google Scholar
  19. Luhan MRJ (1992) Agar yield and gel strength of Gracilaria heteroclada collected from Iloilo, Central Philippines. Bot Mar 35:169–172Google Scholar
  20. Marinho-Soriano E (2001) Agar polysaccharides from Gracilaria species (Rhodophyta, Gracilariaceae). J Biotechnol 89:81–84PubMedCrossRefGoogle Scholar
  21. Marinho-Soriano E, Bourret E, de Casabianca ML, Maury L (1999) Agar from the reproductive and vegetative stages of Gracilaria bursa-pastoris. Bioresour Technol 67:1–5CrossRefGoogle Scholar
  22. Marinho-Soriano E, Silva TSF, Moreira WSC (2001) Seasonal variation in the biomass and agar yield from Gracilaria cervicornis and Hydropuntia cornea from Brazil. Bioresour Technol 77:115–120PubMedCrossRefGoogle Scholar
  23. Matsuhiro B, Zanlungo A (1983) Colorimetric determination of 3,6-anhydrogalactose in polisacharide from red seaweeds. Carbohydr Res 188:276–279CrossRefGoogle Scholar
  24. McHugh DJ (2002) Prospects for seaweed production in developing countries. FAO Fisheries Circular. No. 968, 28 p. FAO, RomeGoogle Scholar
  25. Murano E (1995) Chemical structure and quality of agars from Gracilaria. J Appl Phycol 7:245–254CrossRefGoogle Scholar
  26. Naldi M, Wheeler PA (1999) Changes in nitrogen pools in Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. J Phycol 35:70–77CrossRefGoogle Scholar
  27. Naldi M, Wheeler PA (2002) 15N measurements of ammonium and nitrate uptake by Ulva fenestrata (Chlorophyta) and Gracilaria pacifica (Rhodophyta): comparison of net nutrient disappearance, release of ammonium and nitrate, and 15N accumulation in algal tissue. J Phycol 38:135–144CrossRefGoogle Scholar
  28. Norris JN (1985) Studies on Gracilaria Grev. (Gracilariaceae, Rhodophyta) from the Gulf of California, México. In: Abbott IA, Norris JN (eds) Taxonomy of economic seaweeds. Calif. Sea Grant Coll. Prog. California, I: pp 123–135Google Scholar
  29. Oza RM (1978) Studies on Indian Gracilaria. IV. Seasonal variation in agar and gel strength of Gracilaria corticata J. Ag. occurring on the coast of Veraval. Bot Mar 21:165–167CrossRefGoogle Scholar
  30. Pacheco-Ruiz I, Zertuche-González JA (1996) The commercially valuable seaweeds of the Gulf of California. Bot Mar 39:201–206CrossRefGoogle Scholar
  31. Pacheco-Ruiz I, Zertuche-González JA, Correa-Díaz F, Arellano-Carbajal F, Chee-Barragan A (1999) Gracilariopsis lemaneiformis beds along the best coast of the Gulf of California, Mexico. Hydrobiologia 398/399:509–514CrossRefGoogle Scholar
  32. Pondevida HB, Hurtado-Ponce AQ (1996) Assessment of some agarophytes from the coastal areas of Iloilo, Philippines. II Seasonal variations in the agara quality of Gracilaria changuii, Gracilaria manilaensis and Gracilariopsis bailinae (Gracilariales, Rhodophyta). Bot Mar 39:123–127Google Scholar
  33. Price IR, Bielig LM (1992) Agar yield from Gracilaria edulis (Gracilariales, Rhodophyta) in the Townsville region, eastern tropical Australia. Bot Mar 35:457–460Google Scholar
  34. Thomas TE, Harrison PJ (1987) Rapid ammonium uptake and nitrogen interactions in five intertidal seaweeds grown under field conditions. J Exp Mar Biol Ecol 107:1–8CrossRefGoogle Scholar
  35. Thomas TE, Turpin DH, Harrison PJ (1987) Desiccation enhanced nitrogen uptake rates in intertidal seaweeds. Mar Biol 94:293–298CrossRefGoogle Scholar
  36. Whyte JNC, Englar JR, Saunders RG, Lindsay JC (1981) Seasonal variations in the biomass, quantity and quality of agar, from the reproductive and vegetative stages of Gracilaria (verrucosa type). Bot Mar 24:493–501Google Scholar
  37. Zertuche-Gonzalez JA (1994) Situación actual de la industria de las algas marinas productoras de ficocoloides en México. In: Zertuche-González JA (ed) Situación actual de la industria de las algas marinas productoras de ficocoloides en América Latina y el Caribe. FAO, México, pp 33–37Google Scholar
  38. Zertuche-González JA, Pacheco-Ruíz I, González-González J (1995) Macroalgas. In: Fisher W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (eds) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico Centro-Oriental. I. Plantas e Invertebrados. FAO, Rome, pp 10–82Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Javier Orduña-Rojas
    • 1
    • 2
  • Karla Y. García-Camacho
    • 1
  • Priscila Orozco-Meyer
    • 1
  • Rafael Ríosmena-Rodríguez
    • 3
  • Isaí Pacheco-Ruiz
    • 4
  • José A. Zertuche-González
    • 4
  • Alf E. Meling-López
    • 5
  1. 1.Centro Interdisciplinario de Investigación para el Desarrollo Integral RegionalGuasaveMéxico
  2. 2.Becario COFAA-IPN, EDI-IPNCIIDIR-IPN, SinaloaMéxico
  3. 3.Programa de Investigación en Botánica MarinaUniversidad Autónoma de Baja California SurLa PazMéxico
  4. 4.Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja CaliforniaEnsenadaMéxico
  5. 5.Departamento de Investigación Científica y Tecnológica de la Universidad de SonoraHermosilloMéxico

Personalised recommendations