Journal of Applied Phycology

, Volume 19, Issue 5, pp 449–458 | Cite as

Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico

  • Mayalen Zubia
  • Daniel Robledo
  • Yolanda Freile-Pelegrin


Extracts from 48 marine macroalgae species (17 Chlorophyta, 8 Phaeophyta and 23 Rhodophyta) from the coasts of Yucatan and Quintana Roo (Mexico) were evaluated for antioxidant activity. The antioxidant activity was measured with the DPPH (2,2-diphenyl-1-picrylhydrasyl) method, and the phenolic content of each extract were also evaluated. All species exhibited a DPPH radical scavenging activity, and three species (Avrainvillea longicaulis, Chondria baileyana and Lobophora variegata) demonstrated great antioxidant potential with very low oxidation index EC50 (1.44 ± 0.01, 2.84 ± 0.07 and 0.32 ± 0.01 mg mL−1, respectively), significantly equivalent to EC50 of some commercial antioxidants such as α-tocopherol, ascorbic acid, BHA and BHT. Moreover, extracts of the most active species exhibited reducing activities, superoxide anion radical scavenging and inhibition of lipid peroxidation. These results suggest that some macroalgae from the Yucatan peninsula have a great antioxidant potential which could be considered for future applications in medicine, food production or cosmetic industry.

Key words

antioxidant activity macroalgae 



This research was financed by SAGARPA-CONACYT (Contract 2002-C01-1057). The authors thank J.L. Godinez for identification of the macroalgae species and C. Chávez and M.L. Zaldivar for technical assistance.


  1. Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defense systems against light stress. Mar Biol 140:1087–1095CrossRefGoogle Scholar
  2. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91Google Scholar
  3. Anggadiredja J, Andyani R, Hayati, Muawanah (1997) Antioxidant activity of Sargassum polycystum (Phaeophyta) and Laurencia obtusa (Rhodophyta) from Seribu Islands. J Appl Phycol 9:477–479CrossRefGoogle Scholar
  4. Athukorala Y, Lee KW, Song C, Ahn CB, Shin TS, Cha YJ, Shahidi F, Jeon YJ (2003) Potential antioxidant activity of marine red alga Grateloupia filicina extracts. J Food Lipids 10:251–265CrossRefGoogle Scholar
  5. Ballantine DL, Gerwick WH, Velez SM, Alexander E, Guevara P (1987) Antibiotic activity of lipid-soluble extracts from Caribbean marina algae. Hydrobiologia 151/152:463–469CrossRefGoogle Scholar
  6. Bischof K, Kräbs G, Wiencke C, Hanelt D (2002) Solar ultraviolet radiation affects the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase and the composition of photosynthetic and xanthophylls cycle pigments in the intertidal green alga Ulva lactuca L. Planta 215:502–509PubMedCrossRefGoogle Scholar
  7. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2005) Marine natural products. Nat Prod Rep 22:15–61PubMedCrossRefGoogle Scholar
  8. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss U-Technol 28:25–30Google Scholar
  9. Cavas L, Yurdakoc K (2005) A comparative study: assessment of the antioxidant system in the invasive green alga Caulerpa racemosa and some macrophytes from the Mediterranean. J Exp Mar Biol Ecol 321:35–41CrossRefGoogle Scholar
  10. Choo KS, Snoeijs P, Pedersen M (2004) Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana. J Exp Mar Biol Ecol 298:111–123CrossRefGoogle Scholar
  11. Connan S, Delisle F, Deslandes E, Ar Gall E (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:34–46CrossRefGoogle Scholar
  12. Davyt D, Entz W, Fernandez R, Mariezcurrena R, Mombru AW, Saldaña J, Dominguez L, Coll J, Manta E (1998) A new indole derivative from the red alga Chondria atropurpurea. Isolation, Structure determination, and anthelmintic activity. J Nat Prod 61:1560–1563PubMedCrossRefGoogle Scholar
  13. Duran R, Zubia E, Ortega MJ, Salva J (1997) New diterpenoids from the alga Dictyota dichotoma. Tetrahedron 53:8675–8688CrossRefGoogle Scholar
  14. Fallarero A, Loikkanen JJ, Mansito PT, Castañeda O, Vidal A (2003) Effects of aqueous extracts of Halimeda incrassata (Ellis) Lamouroux and Bryothamnion triquetrum (S.G. Gmelin) Howe on hydrogen peroxide and methyl mercury-induced oxidative stress in GT1-7 mouse hypothalamic immortalized cells. Phytomedicine 10:39–47PubMedCrossRefGoogle Scholar
  15. Fenical W, Paul VJ (1984) Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae. Hydrobiologia 116/117:135–140CrossRefGoogle Scholar
  16. Frankel EN, Meyer AS (2000) The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80:1925–1941CrossRefGoogle Scholar
  17. Fujimoto K (1990) Antioxidant activity of algal extracts. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing, The Hague, pp 199–208Google Scholar
  18. Hay ME, Duffy JE, Paul VJ, Renaud PE, Fenical W (1990) Specialist herbivores reduce their susceptibility to predation by feeding on the chemically defended seaweed Avrainvillea longicaulis. Limnol Oceanogr 35:1734–1743CrossRefGoogle Scholar
  19. Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Biores Technol 96:1613–1623CrossRefGoogle Scholar
  20. Huang HL, Wang BG (2004) Antioxidant capacity and lipophilic content of seaweeds collected from the Qingdao coastline. J Agric Food Chem 52:4993–4997PubMedCrossRefGoogle Scholar
  21. Huang D, Ou B, Prior L (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856PubMedCrossRefGoogle Scholar
  22. Karawita R, Siriwardhana N, Lee KW, Heo MS, Yeo IK, Lee YD, Jeon YJ (2005) Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Food Res Technol 220:363–371CrossRefGoogle Scholar
  23. Kim SJ, Woo S, Yun H, Yum S, Choi E, Do JR, Jo JH, Kim D, Lee S, Lee TK (2005) Total phenolic contents and biological activities of Korean seaweed extracts. Food Sci Biotechnol 14:798–802Google Scholar
  24. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and method for their quantification. Toxicol Pathol 30:620–650PubMedCrossRefGoogle Scholar
  25. Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci USA 100(12):6916–6921PubMedCrossRefGoogle Scholar
  26. Kuda T, Tsunekawa M, Hishi T, Araki Y (2005) Antioxidant properties of dried ‘kayamo-nori’, a brown alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem 89:617–622CrossRefGoogle Scholar
  27. Le Tutour B, Benslimane F, Gouleau MP, Gouygou JP, Saadan B, Quemeneur F (1998) Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. J Appl Phycol 10:121–129CrossRefGoogle Scholar
  28. Lim SN, Cheung PCK, Ooi VEC, Ang PO (2002) Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50:3862–3866PubMedCrossRefGoogle Scholar
  29. Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9:29–35CrossRefGoogle Scholar
  30. Mori J, Matsunaga T, Takahashi S, Hasegawa C, Saito H (2003) Inhibitory activity on lipid peroxidation of extracts from marine brown alga. Phytother Res 17:549–551PubMedCrossRefGoogle Scholar
  31. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish Sci 62:923–926Google Scholar
  32. Oyaizu M (1986) Studies on products of browning reaction prepared fromglucoseamine. Jpn J Nutr 44:307–314Google Scholar
  33. Park PJ, Heo SJ, Park EJ, Kim SK, Byun HG, Jeon BT, Jeon YJ (2005) Reactive oxygen effect of enzymatic extracts from Sargassum thunbergii. J Agric Food Chem 53:6666–6672PubMedCrossRefGoogle Scholar
  34. Pavia H, Cervin G, Lindgren A, Åberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146Google Scholar
  35. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress, Bristol, pp 129–241Google Scholar
  36. Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–158CrossRefGoogle Scholar
  37. Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841PubMedCrossRefGoogle Scholar
  38. Rupérez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulphated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845PubMedCrossRefGoogle Scholar
  39. Safer AM, al-Nughamish AJ (1999) Hepatotoxicity induced by the anti-oxidant food additive, butylated hydroxytoluene (BHT), in rats: an electron microscopical study. Histol Histopathol 14:391–406PubMedGoogle Scholar
  40. Sanchez-Moreno C, Larrauri JA, Saura-Calixto F (1999) Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int 32:407–412CrossRefGoogle Scholar
  41. Santoso J, Yoshie-Stark Y, Suzuki T (2004) Anti-oxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fish Sci 70:183–188CrossRefGoogle Scholar
  42. Senevirathne M, Kim SK, Siriwardhana N, Ha JH, Lee KW, Jeon YJ (2006) Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci Tech Int 12:27–38CrossRefGoogle Scholar
  43. Siriwardhana N, Lee KW, Kim SH, Ha JH, Jeon YJ (2003) Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Tech Int 9:339–346CrossRefGoogle Scholar
  44. Sun HH, Paul VJ, Fenical W (1983) Avrainvilleol, a brominated diphenylmethane derivative with feeding deterrent properties from the tropical green alga Avrainvillea longicaulis. Phytochemistry 22:743–745CrossRefGoogle Scholar
  45. Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608PubMedCrossRefGoogle Scholar
  46. Targett NM, Boettcher AA, Targett TE, Vrolijk NH (1995) Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103:170–179CrossRefGoogle Scholar
  47. Wei Y, Li Z, Hu Y, Xu Z (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J Appl Phycol 15:507–511CrossRefGoogle Scholar
  48. Wynne MJ (2005) A checklist of benthic marine algae of the tropical andsubtropical western Atlantic: second revision. Nova Hewigia Beih 129:1–152Google Scholar
  49. Yan XJ, Li XC, Zhou CX, Fan X (1996) Prevention of fish oil rancidity by phlorotannins from Sargassum kjellmanianum. J Appl Phycol 8:201–203CrossRefGoogle Scholar
  50. Yan XJ, Nagata T, Fan X (1998) Antioxidative activities in some seaweeds. Plant Foods Hum Nutr 52:253–262PubMedCrossRefGoogle Scholar
  51. Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43:27–32CrossRefGoogle Scholar
  52. Yuan YV, Bone DE, Carrington MF (2005) Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem 91:485–494CrossRefGoogle Scholar
  53. Zhang P, Omaye ST (2001) Antioxidant and prooxidant roles for β-carotene, α-tocopherol and ascorbic acid in human lung cells. Toxicol In Vitro 15:13–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Mayalen Zubia
    • 1
  • Daniel Robledo
    • 1
  • Yolanda Freile-Pelegrin
    • 1
  1. 1.Departamento de Recursos del MarCINVESTAV Unidad MéridaMéridaMéxico

Personalised recommendations