Skip to main content
Log in

Sequence analysis of Arthrospira maxima based on fosmid library

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Arthrospira (Spirulina) (Setchell & Gardner) is an important cyanobacterium not only in its nutritional potential but in its special biological characteristics. An unbiased fosmid library of Arthrospira maxima FACHB438 that contains 4300 clones was constructed. The size distribution of insert fragments is from 15.5 to 48.9 kb and the average size is 37.6 kb. The recombination frequency is 100%. Therefore the library is 29.9 equivalents to the Arthrospira genome size of 5.4 Mb. A total of 719 sample clones were randomly chosen from the library and 602 available sequences, which consisted of 307,547 bases, covering 5.70% of the whole genome. The codon usage of A. maxima was not strongly biased. GC content at the first position of codons (46.9%) was higher than the second (39.8%) and the third (45.5%) positions. GC content of the genome was 43.6%. Of these sequences, 287 (47.7%) showed high similarities to known genes, 63 (10.5%) to hypothetical genes and the remaining 252 (41.8%) had no significant similarities. The assigned genes were classified into 22 categories with respect to different biological roles. Remarkably, the high presence of 25 sequences (4.2%) encoding reverse transcriptase indicates the RT gene may have multiple copies in the A. maxima genome and might play an important role in the evolutionary history and metabolic regulation. In addition, the sequences encoding the ATP-binding cassette transport system and the two-component signal transduction system were the second and third most frequent genes, respectively. These genomic features provide some clues as to the mechanisms by which this organism adapts to the high concentration of bicarbonate and to the high pH environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

FIGE:

Field inversion gel electrophoresis

KEGG:

Kyoto Encyclopedia of Genes and Genomes

RT:

Reverse transcriptase

TCST:

Two-component signal transduction system

Reference

  • Bateman A, Birney E, Cerruti L, Durbin R, Marshall M, Sonnhammer EL (2002) The Pfam protein family database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Dhundale A, Lampson B, Furuichi T, Inouye M, Inouye S (1987) Structure of msDNA from Myxococcus xanthus: evidence for a long, self annealing RNA precursor for the covalently linked, branched RNA. Cell 51:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Fath MJ, Kolter R (1993) ABC transporters: bacterial exporters. Microbiol Rev 57:995–1017

    PubMed  CAS  Google Scholar 

  • Garcia-Dominguez M, Muro-Pastor MI, Reyesm JC, Florencio FJ (2000) Light-dependent regulation of cyanobacterial phytochrome expression. J Bacteriol 182:38–44

    PubMed  CAS  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Hsu MY, Eagle S, Inouye M (1989) Reverse transcriptase associated with the branched RNA-linked msDNA in Myxococcus xanthus. Cell 56:709–717

    Article  PubMed  CAS  Google Scholar 

  • Jitka M, Marcela F (2003) Retron reverse transcriptase rrtT is ubiquitous in strains of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 223:281–286

    Article  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213

    Article  PubMed  CAS  Google Scholar 

  • Kawata Y, Yano S, Kojima H, Toyomizu M (2004) Transformation of Spirulina platensis strain C1 (Arthrospira sp. PCC 9438) with Tn5 transposase-transposon DNA-cation liposome complex. Mar Biotechnol 6:355–363

    Article  PubMed  CAS  Google Scholar 

  • Kay RA (1991) Microalgae as food and supplement. Crit Rev Food Sci 30:555–573

    Article  CAS  Google Scholar 

  • Kojima H, Qin S, Thankappan AK, Kawata Y, Yano S (1998) Transposable genetic elements in Spirulina and potential applications for genetic engineering. Chin J Oceanol Limnol 16:30–39

    Google Scholar 

  • Lampson BC, Sun J, Inouye S, Inouye M (1989) Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science 243:1033–1038

    Article  PubMed  CAS  Google Scholar 

  • Lampson BC, Inouye M, Inouye S (1991) Survey of multicopy single-stranded DNAs and reverse transcriptase genes among natural isolates of Myxococcus xanthus. J Bacteriol 173:5363–5370

    PubMed  CAS  Google Scholar 

  • Lanfaloni L, Trinei M, Russo M, Gualerzi CO (1991) Mutagenesis of the cyanobacterium Spirulina platensis by UV and nitrosoguanidine treatment. FEMS Microbiol Lett 83:85–90

    Article  CAS  Google Scholar 

  • Lim D, Maas WK (1989) Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E.coli. Cell 56:891–904

    Article  PubMed  CAS  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • McClelland M, Wilson RK (1998) Comparison of sample sequences of the Salmonella typhi genome to the sequence of complete Escherichia coli K-12 genome. Infect Immun 66:4305–4312

    PubMed  CAS  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  PubMed  CAS  Google Scholar 

  • Møller JV, Juul B, le Maire M (1996) Structural organization, ion transport, and energy transduction of ATPases. Biochim Biophys Acta 1286:1–51

    PubMed  Google Scholar 

  • Palenik B, Brahamsha B, Land M, Hauser L, Chain P, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Qin S (1993) Isolation of plasmid from the blue-green alga-Spirulina platensis. Chin J Occnol Limnol 11:285–288

    Article  Google Scholar 

  • Reumann S, Davila-Aponte J, Keegstra K (1999) The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. Proc Natl Acad Sci 96:784–789

    Article  PubMed  CAS  Google Scholar 

  • Riccardi G, Savi A, Ciferri O (1981) Characterization of mutants of Spirulina platensis resistant to amino acid analogues. FEMS Microbiol Lett 12:333–336

    Article  CAS  Google Scholar 

  • Rice SA, Bieber J, Lampson BC (1993) Diversity of retron elements in a population of rhizobia and other Gram-negative bacteria. J Bacteriol 175:4250–4254

    PubMed  CAS  Google Scholar 

  • Takakazu K, Shusei S, Hirokazu K, Ayako T, Erika A (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136

    Article  Google Scholar 

  • Toyomizu M, Suzuki K, Kawata Y, Kojima H, Akiba Y (2001) Effective transformation of the cyanobacterium Spirulina platensis using electroporation. J Appl Phycol 13:209–214

    Article  CAS  Google Scholar 

  • Vachhani AK, Vonshak A (1997) Genetics of Spirulina. In: Vonshak A (ed) Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor & Francis Ltd, London, pp 67–77

    Google Scholar 

  • Vinnemeier J, Hagemann M (1999) Identification of salt-regulated genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803 by subtractive RNA hybridization. Arch Microbiol 172:377–386

    Article  PubMed  CAS  Google Scholar 

  • Wang GG, Zhang BH, Mao YX, Zhang XC (2001) Axenic single cells preparation and regeneration of Spirulina platensis. High Tech Lett 4:9–13 (in Chinese)

    Google Scholar 

  • Xu H, He L, Zhu Y, Zhou Y (2003) EST pipeline system: detailed and automated EST data processing and mining. Geno Prot & Bioinfo 1:236–242

    CAS  Google Scholar 

  • Yeh KC, Wu SH, Murphy JT, Lagarias JC (1997) A cyanobacterial phytochrome two-component light sensory system. Science 277:1505–1508

    Article  PubMed  CAS  Google Scholar 

  • Yura K, Toh H, Go M (1999) Putative mechanism of natural transformation as deduced from genome data. DNA Res 6:75–82

    Article  PubMed  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthèse de Spirulina maxima Geitler. Dissertation, University of Paris, France

  • ZoBell CE (1946) Marine Microbiology. Chronica Botanica Company, Waltham, MA

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No.30200208 and No.30571418) and the Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences. We thank Hangzhou Genomics Institute for performing the DNA sequencing under contract and Aruna kumara for valuable advice and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxiang Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, N., Mao, Y., Zhang, X. et al. Sequence analysis of Arthrospira maxima based on fosmid library. J Appl Phycol 19, 333–346 (2007). https://doi.org/10.1007/s10811-006-9140-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-006-9140-9

Key words

Navigation