Advertisement

Journal of Applied Phycology

, Volume 18, Issue 2, pp 219–225 | Cite as

cDNA cloning and phylogenetic and expression analyses of actin in symbiotic dinoflagellates (Symbiodinium spp.)

  • Toshiki Watanabe
  • Shin-ichi Kii
  • Jiro Tanaka
  • Kiyotaka Takishita
  • Tadashi Maruyama
Note

Abstract

Three cDNAs encoding actins were identified in two culturable strains (clades A and F) of the symbiotic dinoflagellates Symbiodinium spp. In a molecular phylogenetic analysis these actin sequences formed a monophyletic group with known dinoflagellate actins, remote from Syact-p that had been isolated from a clade A Symbiodinium strain (HG39). One of the newly identified actin sequences (SyAct-F1) was the most closely related to partial actin cDNA sequences (named AGfact-p and AFcact-p) isolated from adult colonies of two reef corals (Galaxea fascicularis and Favites chinensis) that were inhabited by Symbiodinium spp., suggesting the possibility that the latter two were from the symbionts. Partial AFcact-p sequences could be amplified by PCR using genomic DNA prepared from a symbiotic adult colony of F. chinensis as the template, but not from planula larvae in which zooxanthellae could not be detected, also arguing for the origin of AFcact-p in the symbiont. An expression analysis showed that the levels of the SyAct-A1 mRNA were comparable in symbiotic and non-symbiotic states, and also in motile and non-motile phases in a cultured condition, suggesting its usefulness as a constitutively expressed control gene in expression analysis of Symbiodinium mRNAs.

Keywords

Acropora Alveolata Coral Pulanula Symbiosis Zooxanthella 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banaszak AT, LaJeunesse TC, Trench RK (2000) The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J Exp Mar Biol Ecol 249:219–233CrossRefGoogle Scholar
  2. Baillie BK, Belda-Baillie CA, Maruyama T (2000) Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36:1153–1161CrossRefGoogle Scholar
  3. Baker AC (2003) Flexibility and specificity in coral—algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  4. Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. in: Dubinsky Z (ed). Coral reefs:Ecosystems of the world, Vol. 25. Elsevier, Amsterdam, pp. 109–131Google Scholar
  5. Bentis CJ, Kaufman L, Golubic S (2000) Endolithic fungi in reef-building corals (order: Scleractinia) are common, cosmopolitan, and potentially pathogenic. Biol Bull 198:254–260PubMedCrossRefGoogle Scholar
  6. Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalva), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062CrossRefGoogle Scholar
  7. Fukuda I, Imagawa S, Iwao K, Horiguchi T, Watanabe T (2002) Isolation of actin-encoding cDNAs from symbiotic corals. DNA Res 9:217–223PubMedCrossRefGoogle Scholar
  8. Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Commun 304:11–17PubMedCrossRefGoogle Scholar
  9. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  10. Harrison PL, Wallace CC (1990) Reproduction, dispersal and recruitment of scleractinian corals. in: Dubinsky Z (ed). Coral reefs: ecosystems of the world, Vol. 25. Elsevier, Amsterdam, pp 133–207Google Scholar
  11. Hayakawa H, Nakano Y, Andoh T, Watanabe T (2005) Sex-dependent expression of mRNA encoding a major egg protein in the gonochoric coral Galaxea fascicularis. Coral Reefs 24:488–494CrossRefGoogle Scholar
  12. Imagawa S, Nakano Y, Watanabe T (2004) Molecular analysis of a major soluble egg protein in the scleractinian coral Favites chinensis. Comp Biochem Physiol 137B:11–19Google Scholar
  13. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates of the genus Symbiodinium using the ITS region: in search of a ‘species’ level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  14. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. in: Dubinsky Z (ed): Coral reefs:Ecosystems of the world, Vol. 25. Elsevier, Amsterdam, pp. 75–87Google Scholar
  15. Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27CrossRefGoogle Scholar
  16. Rodrìguez F, Oliver JF, Marìn A, Medina JR (1990) The general stochastic model of nucleotide substitutions. J Theor Biol 142:485–501PubMedCrossRefGoogle Scholar
  17. Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417CrossRefGoogle Scholar
  18. Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73CrossRefGoogle Scholar
  19. Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: implications for extrapolating to the intact symbiosis. J Phycol 37:900–912CrossRefGoogle Scholar
  20. Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79CrossRefGoogle Scholar
  21. Takishita K, Ishida K, Maruyama T (2003) An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte. Protist 154:443–454PubMedCrossRefGoogle Scholar
  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  23. Toller WW, Rowan R, Knowlton N (2002) Genetic evidence for a protozoan (phylum Apicomplexa) associated with corals of the Montastraea annularis species complex. Coral Reefs 21:143–146Google Scholar
  24. Trench RK (1987) Dinoflagellates in non-parasitic symbioses. in: Taylor FJR (ed). The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 530–570Google Scholar
  25. van Oppen M (2000) In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs 20:200CrossRefGoogle Scholar
  26. Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville, Australia.Google Scholar
  27. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedGoogle Scholar
  28. Yuyama I, Hayakawa H, Endo H, Iwao K, Takeyama H, Maruyama T, Watanabe T (2005) Identification of symbiotically expressed coral mRNAs using a model infection system. Biochem Biophys Res Commun 336:793–798PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V. 2006

Authors and Affiliations

  • Toshiki Watanabe
    • 1
  • Shin-ichi Kii
    • 2
  • Jiro Tanaka
    • 2
  • Kiyotaka Takishita
    • 3
  • Tadashi Maruyama
    • 3
  1. 1.Ocean Research InstituteThe University of TokyoTokyoJapan
  2. 2.Faculty of Marine ScienceTokyo University of Marine Science and TechnologyTokyoJapan
  3. 3.Extremobiosphere Research CenterJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations