Advertisement

Journal of Applied Phycology

, Volume 18, Issue 2, pp 145–151 | Cite as

Antialgal Activity of Several Cyanobacterial Exometabolites

  • Rainer -B. Volk
Original Article

Abstract

The isolation of norharmalane (3,4-dihydro-9H-pyrido(3,4-b)indole) from culture media of the cyanobacterium Nodularia harveyana is described. The minimum toxic quantities against selected cyanobacteria of this compound, of the two known cyanobacterial exometabolites 4,4′-dihydroxybiphenyl and norharmane (9H-pyrido(3,4-b)indole) and in addition of harmane (1-methyl-9H-pyrido(3,4-b)indole) were determined using a special TLC plate assay. The three β-carbolines harmane, norharmane and norharmalane were tested both as bases and as hydrochlorides. All four test compounds were found to be cytotoxic against the cyanobacterial test organisms in low quantities (0.5 to 18.0 μg). For the β-carbolines the following structure-response relationships were revealed: the double bond in position 3–4 and possibly the 1-methyl-group increased the cytotoxic effect of these indole alkaloids. Minimum toxic quantities detected for β-carboline bases were in general lower than those of equimolar amounts of the corresponding hydrochlorides. The possible applicability of both β-carbolines and biphenyls as agents in antifouling systems is discussed.

Keywords

4,4′-dihydroxybiphenyl β-carbolines Cytotoxicity Harmane Indole alkaloid Norharmalane Norharmane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aassila H, Bourguet-Kondracki ML, Rifai S, Fassouane A, Guyot M (2003) Identification of Harman as the antibiotic compound produced by a tunicate-associated bacterium. Marine Biotechnol 5:163–166CrossRefGoogle Scholar
  2. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578PubMedCrossRefGoogle Scholar
  3. Chiarugi A, Dello Sbarba P, Paccagnini A, Donnini S, Filippi S, Moroni F (2000) Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-gamma-activated macrophages. J Leukoc Biol 68(2):260–266PubMedGoogle Scholar
  4. Cho JY, Kwon E-H, Choi J-S, Hong S-Y, Shin H-W, Hong YK (2001) Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. J Appl Phycol 13:117–125CrossRefGoogle Scholar
  5. Connop BP, Kalisch BE, Boegman RJ, Jhamandas K, Beninger RJ (1995) Enhancement of 7-nitro indazole-induced inhibition of brain nitric oxide synthase by norharmane. Neurosci Lett 190(1):69–72PubMedCrossRefGoogle Scholar
  6. Cooper EJ, Hudson AL, Parker CA, Morgan NG (2003) Effects of beta-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur J Pharmacol 482(1–3):189–196PubMedCrossRefGoogle Scholar
  7. De Philippis R, Ena A, Paperi R, Sili C, Vincenzini M (2000) Assessment of the potential of Nostoc strains from the Pasteur culture collection for the production of polysaccharides of applied interest. J Appl Phycol 12:401–407CrossRefGoogle Scholar
  8. Falch BS, König GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM, Bachmann H (1995) Biological activities of cyanobacteria: Evaluation of extracts and pure compounds. Planta Med 61:321–328PubMedCrossRefGoogle Scholar
  9. Fischer D, Schlösser UG, Pohl P (1997) Exopolysaccharide production by cyanobacteria grown in closed photobioreactors and immobilized using white cotton towelling. J Appl Phycol 9:205–213CrossRefGoogle Scholar
  10. Flores E, Wolk CP (1986) Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch Microbiol 145:215–219PubMedCrossRefGoogle Scholar
  11. Fodor G, Gal J, Philips BA (1972) Mechanism of the Bischler-Napieralski reaction. Angew Chem, Int Ed Engl 11:919–920CrossRefGoogle Scholar
  12. Hill DR, Keenan TW, Helm RF, Potts M, Crowe LM, Crowe JH (1997) Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J appl Phycol 9:237–248CrossRefGoogle Scholar
  13. Jaki B, Orjala J, Heilmann J, Linden A, Vogler B, Sticher O (2000) Novel Extracellular Diterpenoids with Biological Activity from the Cyanobacterium Nostoc commune. J Nat Prod 63:339–343PubMedCrossRefGoogle Scholar
  14. Jaki B, Orjala J, Sticher O (1999) A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc comune. J Nat Prod 62:502–503PubMedCrossRefGoogle Scholar
  15. Jaki B, Zerbe O, Heilmann J, Sticher O (2001) Two novel cyclic peptides with antifungal activity from the Cyanobacterium Tolypothrix byssoidea (EAWAG 195). J Nat Prod 63:154–158CrossRefGoogle Scholar
  16. Kanaoka Y, Sato E, Ban Y (1967) Polyphosphate ester as a synthetic agent. VI. Bischler-Napieralski reaction of tryptamine and tryptophan derivates by means of polyphosphate ester. Chem Pharm Bul 15:101–107Google Scholar
  17. Kodani S, Imoto A, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44-1. J Appl Phycol 14:109–114CrossRefGoogle Scholar
  18. Ördog V, Stirk WA, Lenobel R, Bancíová M, Strnad M, van Staden J, Szigeti J, Németh L (2004) Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. J Appl Phycol 16:309–314CrossRefGoogle Scholar
  19. Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J Appl Phycol 12:543–547CrossRefGoogle Scholar
  20. Pohl P, Kohlhase M, Krautwurst S, Baasch KH (1987) An inexpensive inorganic culture medium for the mass cultivation of freshwater microalgae. Phytochem 26:1657–1659CrossRefGoogle Scholar
  21. Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In: Stadler T, Mollion J, Verdus M-C, Karamanos Y, Morvan H, Christiaen D (eds.), Algal Biotechnology. Elsevier Applied Science, London and New York, pp 209–217.Google Scholar
  22. Schlegel I, Doan NT, de Chazal N, Smith GD (1998) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479CrossRefGoogle Scholar
  23. Schlösser UG (1994) SAG-Sammlung von Algenkulturen at the University of Göttingen. Bot Acta 107(3):113–186Google Scholar
  24. Schulze (2000) Gewinnung und Identifizierung von nutzbaren Verbindungen aus den Nährlösungen und Biomassen von Mikroalgen. PhD Thesis, Christian-Albrechts-University Kiel, GermanyGoogle Scholar
  25. Totsuka Y, Takamura-Enya T, Nishigaki R, Sugimura T, Wakabayashi K (2004) Mutagens formed from beta-carbolines with aromatic amines. J Chromatogr B 802(1):135–141CrossRefGoogle Scholar
  26. Volk R-B (2005) Screening of microalgal culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana, respectively. J Appl Phycol 17:339–347CrossRefGoogle Scholar
  27. Wallhäuß er KH (1995) Chemische Konservierungsmittel gegen mikrobiellen Verderb. In: Wallhäuß er KH (ed.) Praxis der Sterilisation Desinfektion-Konservierung. Georg Thieme Verlag, Stuttgart, 437 ppGoogle Scholar
  28. Whaley WM, Govindachari TR (1951) Preparation of 3,4-dihydroisoquinolines and related compounds by the Bischler-Napieralski reaction. Organic Reactions VI: 74–150Google Scholar
  29. Zheng L, Chen H, Han X, Lin W, Yan X (2005) Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol & Biotechnol 21:201–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Pharmazeutisches Institut, Abteilung Pharmazeutische BiologieUniversität KielKielGermany

Personalised recommendations