Journal of Applied Phycology

, Volume 17, Issue 3, pp 261–271 | Cite as

Selective real-time herbicide monitoring by an array chip biosensor employing diverse microalgae

  • Björn Podola
  • Michael Melkonian


A multiple-strain algal biosensor was constructed for the detection of herbicides inhibiting photosynthesis. Nine different microalgal strains were immobilised on an array biochip using permeable membranes. The biosensor allowed on-line measurements of aqueous solutions passing through a flow cell using chlorophyll fluorescence as the biosensor response signal. The herbicides atrazine, simazine, diuron, isoproturon and paraquat were detectable within minutes at minimal LOEC (Lowest Observed Effect Concentration) ranging from 0.5 to 100μgL−1, depending on the herbicide and algal strain. The most sensitive strains in terms of EC50 values were Tetraselmis cordiformis and Scherffelia dubia. Less sensitive species were Chlorella vulgaris, Chlamydomonas sp. and Pseudokirchneriella subcapitata, but for most of the strains no general sensitivity or resistance was found. The different responses of algal strains to the five herbicides constituted a complex response pattern (RP), which was analysed for herbicide specificity within the linear dose-response relationship. Comparisons of herbicide-specific RP to reference RPs of the five herbicides always showed the lowest deviation of the herbicide-specific RP tested with the reference RP of the same herbicide for the triazine and phenylurea herbicides. We therefore conclude that, in principle, identification of a specific herbicide is possible employing the algal sensor chip.

Key Words

Chlorella vulgaris chlorophyll fluorescence herbicides Pseudokirchneriella subcapitata Scherffelia dubia Tetraselmis cordiformis whole-cell biosensor 



algal sensor chip


95% confidence interval


Effect Concentration 50

Δ F/Fm

Quantum Efficiency of Electron Transport of Photosystem II


Maximal fluorescence induced by saturation pulse


Fluorescence at steady state of photosynthesis


Lowest Observed Effect Concentration


No Observed Effect Concentration


Photosystem I


Photosystem II


Response pattern – describes differences among several algal strains in their sensitivity to herbicides


Herbicide specific and concentration independent response pattern used as a standard reference for the identification of unknown herbicides


Response pattern of an unknown herbicide to be identified by comparison to different herbicide specific RP1’s


Standard deviation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamirano M, Garcia-Villada L, Agrelo M, Sanchez-Martin L, Martin-Otero L, Flores-Moya A, Rico M, Lopez-Rodas V, Costas E (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: An application to detect TNT. Biosens. Bioelectron. 19: 1319–1323.CrossRefPubMedGoogle Scholar
  2. Avramescu A, Rouillon R, Carpentier R (1999) Potential for use of a cyanobacterium Synechocystis sp. immobilized in poly(vinylalcohol): Application to the detection of pollutants. Biotechnol. Tech. 13: 559–562.CrossRefGoogle Scholar
  3. Baeumner AJ (2003) Biosensors for environmental pollutants and food contaminants. Anal. Bioanal. Chem. 377: 434–445.CrossRefPubMedGoogle Scholar
  4. Ben Rejeb S, Fischer-Durand N, Martel A, Le Goffic F, Lawrence JF, Yeung JM, Abbott MA (1998) Development and validation of an indirect enzyme immunoassay for the detection of the herbicide isoproturon in water matrices. Int. J. Environ. Anal. Chem. 69: 13–30.Google Scholar
  5. Blanck H, Wallin G, Wängberg SÅ (1984) Species dependent variation in algal sensitivity to chemical compounds. Ecotox. Environ. Safe. 8: 339–351.CrossRefGoogle Scholar
  6. Bouchardy C, Schüler G, Minder C, Hotz P, Bousquet A, Levi F, Fisch T, Torhorst J, Raymond L (2002) Cancer risk by occupation and socioeconomic group among men – A study by the Association of Swiss Cancer Registries. Scand. J. Work Environ. Health 28: 1–88.Google Scholar
  7. Brack W, Frank H (1998) Chlorophyll a fluorescence: A tool for the investigation of toxic effects in the photosynthetic apparatus. Ecotox. Environ. Safe. 40: 34–41.CrossRefGoogle Scholar
  8. Bukhov N, Egorova E, Krendeleva T, Rubin A, Wiese C, Heber U (2001) Relaxation of variable chlorophyll fluorescence after illumination of dark-adapted barley leaves as influenced by the redox states of electron carriers. Photosynth. Res. 70: 155–166.CrossRefGoogle Scholar
  9. Buschmann C, Langsdorf G, Lichtenthaler HK (2000) Imaging of the blue, green, and red fluorescence emission of plants: An overview. Photosynthetica 38: 483–491.CrossRefGoogle Scholar
  10. Campanella L, Cubadda F, Sammartino MP, Saoncella A (2001) An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res. 35: 69–76.CrossRefPubMedGoogle Scholar
  11. European Union (1998) Council Directive 98/83/EC of 3 November 1998.Google Scholar
  12. Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sens. Actuator B-Chem. 51: 256–260.CrossRefGoogle Scholar
  13. Girling AE, Pascoe D, Janssen CR, Peither A, Wenzel A, Schäfer H, Neumeier B, Mitchell GC, Taylor EJ, Maund SJ, Lay JP, Jüttner I, Crossland NO, Stephenson RR, Personne G (2000) Development of methods for evaluating toxicity to freshwater ecosystems. Ecotox. Environ. Safe. 45: 148–176.CrossRefGoogle Scholar
  14. Gitelson AA, Buschmann C, Lichtenthaler HK (1998) Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant Physiol. 152: 283–296.Google Scholar
  15. Grandet M, Weil L, Quentin KE (1988) Determination of triazine-herbicides and their metabolites in water samples by gas-chromatography. Z. Wasser Abwass. For. 21: 21–24.Google Scholar
  16. Gregor J, Marsalek B (2004) Freshwater phytoplankton quantification by chlorophyll alpha: A comparative study of in vitro, in vivo and in situ methods. Water Res. 38: 517–522.CrossRefPubMedGoogle Scholar
  17. Koblizek M, Masojidek J, Komenda J, Kucera T, Pilloton R, Mattoo AK, Giardi MT (1998) A sensitive photosystem II-based biosensor for detection of a class of herbicides. Biotechnol. Bioeng. 60: 664–669.CrossRefPubMedGoogle Scholar
  18. Ma J, Lin F, Wang S, Xu L (2003) Toxicity of 21 herbicides to the green alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol. 71: 594–601.CrossRefPubMedGoogle Scholar
  19. Mattoo AK, Pick U, Hoffman-Falk H, Edelman M (1981) The rapidly metabolized 32,000-Dalton polypeptide of the chloroplast is the proteinaceous shield regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc. Natl. Acad. Sci. U.S.A. 78: 1572–1576.PubMedGoogle Scholar
  20. McCormick PV, Cairns J (1994) Algae as indicators of environmental-change. J. Appl. Phycol. 6: 509–526.Google Scholar
  21. McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557.Google Scholar
  22. Moreland DE (1993) Research on biochemistry of herbicides – an historical overview. Z. Naturforsch. (C) 48: 121–131.Google Scholar
  23. Naessens M, Leclerc JC, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotox. Environ. Safe. 46: 181–185.CrossRefGoogle Scholar
  24. Pandard P, Vasseur P, Rawson DM (1993) Comparison of two types of sensors using eukaryotic algae to monitor pollution of aquatic systems. Water Res. 27: 427–431.CrossRefGoogle Scholar
  25. Pastrik KH, Karst U, Schmid RD (1991) Cyanobacteria mutants with increased sensitivity to herbicides – An improved biological material for biosensors. Z. Wasser Abwass. For. 24: 12–15.Google Scholar
  26. Pfister K, Steinback KE, Gardner G, Arntzen CJ (1981) Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc. Natl. Acad. Sci. U.S.A. 78: 981–985.Google Scholar
  27. Pipe AE (1992) Pesticide effects on soil algae and cyanobacteria. Rev. Environ. Contam. Toxicol. 127: 95–170.Google Scholar
  28. Podola B, Melkonian M (2003) A long-term operating algal biosensor for the rapid detection of volatile toxic compounds. J. Appl. Phycol. 15: 415–424.CrossRefGoogle Scholar
  29. Podola B, Nowack ECM, Melkonian M (2004) The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens. Bioelectron. 19: 1253–1260.CrossRefPubMedGoogle Scholar
  30. Rawson DM, Willmer AJ, Cardosi MF (1987) The development of whole cell biosensors for online screening of herbicide pollution of surface waters. Toxic. Asses. 2: 325–340.Google Scholar
  31. Reupert R, Plöger E (1988) Determination of nitrogen-containing pesticides by HPLC with diode-array detection. Fresenius J. Anal. Chem. 331: 503–509.CrossRefGoogle Scholar
  32. Rogers KR (1995) Biosensors for environmental applications. Biosens. Bioelectron. 10: 533–541.CrossRefGoogle Scholar
  33. Rojickova-Padrtova R, Marsalek B (1999) Selection and sensitivity comparisons of algal species for toxicity testing. Chemosphere 38: 3329–3338.CrossRefGoogle Scholar
  34. Schlett C (1991) Multi-residue-analysis of pesticides by HPLC after solid-phase extraction. Fresenius J. Anal. Chem. 339: 344–347.CrossRefGoogle Scholar
  35. Schreiber U, Müller JF, Haugg A, Gademann R (2002) New type of dual-channel PAM chlorophyll fluorometer for highly sensitive water toxicity biotests. Photosynth. Res. 74: 317–330.CrossRefGoogle Scholar
  36. Short P, Colborn T (1999) Pesticide use in the US and policy implications: A focus on herbicides. Toxicol. Ind. Health 15: 240–275.CrossRefPubMedGoogle Scholar
  37. Tang JX, Hoagland KD, Siegfried BD (1997) Differential toxicity of atrazine to selected freshwater algae. Bull. Environ. Contam. Toxicol. 59: 631–637.CrossRefPubMedGoogle Scholar
  38. Umweltbundesamt (1997) Daten zur Umwelt – Der Zustand der Umwelt in Deutschland. Berlin, Erich Schmidt Verlag GmbH & Co.Google Scholar
  39. Vedrine C, Leclerc JC, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron. 18: 457–463.CrossRefPubMedGoogle Scholar
  40. Velasco-Garcia MN, Mottram T (2003) Biosensor technology addressing agricultural problems. Biosyst. Eng. 84: 1–12.CrossRefGoogle Scholar
  41. Vyhnalek V, Fisar Z, Fisarova A, Komarkova J (1993) In-vivo fluorescence of chlorophyll a – Estimation of phytoplankton biomass and activity in Rimov Reservoir (Czech Republic). Water Sci. Technol. 28: 29–33.Google Scholar
  42. Walker AE, Holman RE, Leidy RB (2000) ELISA and GC/MS analysis of pesticide residues in North Carolina. J. Am. Water Resour. Assoc. 36: 67–74.Google Scholar
  43. Weetall HH (1996) Biosensor technology – What? Where? When? And Why? Biosens. Bioelectron. 11: I-IV.CrossRefGoogle Scholar
  44. Weil L, Schneider RJ, Schäfer O, Ulrich P, Weller M, Ruppert T, Niessner R (1991) A heterogeneous immunoassay for the determination of triazine herbicides in water. Fresenius J. Anal. Chem. 339: 468–469.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Botanisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations