Advertisement

Journal of Applied Phycology

, Volume 17, Issue 6, pp 483–494 | Cite as

Using DCMU-fluorescence method for the identification of dominant phytoplankton groups

  • N. A. Gaevsky
  • V. I. Kolmakov
  • O. V. Anishchenko
  • T. B. Gorbaneva
Article

Abstract

For the identification of ecologically significant dominant groups of phytoplanktonic algae a polychromatic DCMU-induced fluorescence method is recommended. A special fluorometer equipped with a system of replaceable filters is used to differentiate three regions of the spectrum (410 ± 20, 510 ± 20 and 540 ± 10 nm) that can excite the basic light-harvesting pigments. Total and differential (for every algal taxon studied) chlorophyll a calculated from the fluorescence signals is in good agreement with biomass estimates from direct cell counts for several different trophic types of aquatic systems. This is made possible by the vizualization of the ratios of fluorescence signal values in their own coordinates: first, to decide whether it is necessary to correct linear equations in order to eliminate negative solutions; second, to determine the possibility of nulling the negative solution if a point is situated close to a side of the triangle; and third, to reduce the number of linear algebraic equations to two if the points are situated along one of the triangle sides or to one if the points are gathered at the apex. The polychromatic DCMU-induced fluorescence method can be used for monitoring natural phytoplankton populations to detect changes in their taxonomic structure.

Key words

algae chlorophyll fluorescence vizualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen U-P, Dau H (2002) A fluorometric method for the differentiation of algal population in vivo and in situ. Photosynth. Res. 72: 39–53.PubMedCrossRefGoogle Scholar
  2. Beutler M, Wiltshire KH, Reineke C, Hansen UP (2004) Algorithms and practical fluorescence models of the photosynthetic apparatus of red cyanobacteria and Cryptophyta desigend for the fluorescence detection of red cyanobacteria and Cryptophyta designed for the fluorescene detection of red cyanobacteria and cryptophytes. Aquat. Microb. Ecol. 35: 115–129.CrossRefGoogle Scholar
  3. Descy JP, Higgins HW, Mackey DJ, Hurley JP, Frost TM (2000) Pigment ratios and phytoplankton assessment in Northern Wisconsin lakes. J. Phycol. 36: 274–286.CrossRefGoogle Scholar
  4. Downes MT, Hall JA (1998) A sensitive fluorometric technique for the measurement of phycobilin pigments and its application to the study of marine and freshwater picophytoplankton in oligotrophic environments. J. Appl. Phycol. 10: 357–363.CrossRefGoogle Scholar
  5. Durnford DG, Dean JA, Tan S (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J. Mol. Evol. 48: 59–68.PubMedCrossRefGoogle Scholar
  6. Ernst DE (1986) Comments on fluorometric chlorophyll determinations in the field. Arch. Hydrobiol. 107: 521–527.Google Scholar
  7. Gaevsky NA, Zotina TA, Gorbaneva TB (2002) Vertical structure and photosynthetic activity of Lake Shira phytoplankton. Aquatic Ecol. 36: 165–178.CrossRefGoogle Scholar
  8. Gitelson AA, Schalles JF, Rundquist DC, Schiebe FR, Yacobi YZ (1999) Comparative reflectance properties of algal cultures with manipulated densities. J. Appl. Phycol. 11: 345–354.CrossRefGoogle Scholar
  9. Gladyshev MI, Sushchik NN, Kalachova GS, Shchur (1998) The effect of algal blooms on the disappearance of phenol in a small forest pond. Water Res. 32: 2769–2775.CrossRefGoogle Scholar
  10. Gladyshev MI, Gribovskaya IV, Moskvicheva AV, Muchkina EY, Chuprov SM, Ivanova EA (2001). Content of metals in compartments of ecosystem of a Siberian pond. Arch. Environ. Contam. Toxicol. 41: 157–162.PubMedCrossRefGoogle Scholar
  11. Green BR (2001) Was "molecular opportunism" a factor in the evolution of different photosynthetic light-harvesting pigment system? Proc. Nat. Acad. Sci. 98: 2119–2121.Google Scholar
  12. Gol'd VM, Gayevskiy NA, Shatrov IY, Popel'nitskiy VA, Rybtsov AC (1986) Use of fluorescence for differential determination of chlorophyll A content of planktonic algae. Hydrobiol. J. 22: 79–84. (In Russian)Google Scholar
  13. Gregor J, Maršálek B (2004) Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res. 38: 517–522.PubMedCrossRefGoogle Scholar
  14. Honeywill C, Paterson DM, Hagerthey SE (2002) Determination of microphytobenthic using pulse- amplitude modulated minimum fluorescence. Eur. J. Phycol. 37: 485–492.CrossRefGoogle Scholar
  15. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167: 191–194.Google Scholar
  16. Kolber ZS, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38: 1646–1665.CrossRefGoogle Scholar
  17. Kolber ZS, Barber RT, Coale KH, Fitzwater SE, Greene RM, Johnson KS, Lindley S, Falkowski PG (1994) Iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 371: 145–149.CrossRefGoogle Scholar
  18. Lee T, Tsuzuki M, Takeuchi T, Yokoyama K, Karube I (1995) Quantitative determination of cyanobacteria in mixed phytoplankton assemblages by an in vivo fluorometric method. Anal. Chim. Acta 302: 81–87.CrossRefGoogle Scholar
  19. Lizotte MP, Priscu JC (1994) Natural fluorescence and quantum yields in vertically stationary phytoplankton from perennially ice-covered lakes. Limnol. Oceanogr. 39: 1399–1410.CrossRefGoogle Scholar
  20. Masojídek J, Torzillo G, Kopecký J, Koblížek M, Nidiaci L, Komenda J, Lukavská A, Sacchi A (2000) Changes in chlorophyll fluorescence quenching and pigment composition in the green algae Chlorococcum sp. grown under nitrogen deficiency and salinity stress. J. Appl. Phycol. 12: 417–462.CrossRefGoogle Scholar
  21. Millie DF, Schofield OME, Kirkpatrik GJ, Jonsen G, Evens TJ (2002) Using absorbance and fluorescence spectra to discriminate microalgae. Eur. J. Phycol. 37: 313–322.CrossRefGoogle Scholar
  22. Nusch EA (1980) Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. 14: 14–36.Google Scholar
  23. Salonen K, Sarvala J, Järvinen M, Langenberg V, Nuottajärvi M, Vuorio K, Chitamwebwa DBR (1999) Phytoplankton in Lake Tanganyika – Vertical and horizontal distribution of in vivo fluorescence. Hydrobiologia 407: 89–103.CrossRefGoogle Scholar
  24. Seppala J, Balode M. (1998) The use of spectral fluorescence methods to detect changes in the phytoplankton community. Hydrobiologia 363: 207–217.CrossRefGoogle Scholar
  25. Sakshaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kiefer DA, Legendre L, Morel A, Parslow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J. Plankt. Res. 19: 1637–1670.CrossRefGoogle Scholar
  26. Schreiber U, Endo T, Mi H, Asada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse method: Particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol. 36: 873–882.Google Scholar
  27. Torzillo G, Accola P, Pinzani E, Masojidek J (1997) In situ monitoring of chlorophyll fluorescence to assess the synergistic effect of low temperature and high irradiance stresses in Spirulina cultures grown outdoors in photobioreactors. J. Appl. Phycol. 8: 283–291.CrossRefGoogle Scholar
  28. Ting CS, Owens TG (1992) Limitation of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Plant Physiol. 100: 367–373.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • N. A. Gaevsky
    • 1
  • V. I. Kolmakov
    • 1
    • 2
  • O. V. Anishchenko
    • 2
  • T. B. Gorbaneva
    • 1
  1. 1.Department of BiologyKrasnoyarsk State UniversityRussia
  2. 2.Institute of Biophysics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations