Journal of Analytical Chemistry

, Volume 60, Issue 4, pp 349–354 | Cite as

Separation of homologues of organic compounds using the gradient of the eluent flow rate on a monolithic porous column

  • P. N. Nesterenko
  • M. A. Rybalko


The use of the gradient of the eluent flow rate is proposed for the optimization of separation in high-performance liquid chromatography (HPLC). This approach was used for the separation of the homologues of polycyclic aromatic compounds and di-n-alkyl phthalates on monolithic porous silica gel Chromolith (Merck, Germany) with modifying octadecyl radicals by reversed-phase HPLC. The principle of the optimization of the gradient of the eluent flow rate for the separation of the homologues of organic compounds was formulated on the basis of peculiarities in their chromatographic retention. It was demonstrated that using the gradient of the flow rate provides the selective and efficient separation of homologues and a significant decrease in the time of separation.


Chromatography Analytical Chemistry HPLC Liquid Chromatography Organic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabrera, K., Lubda, D., Eggenweiler, H.M., et al., J.High Resolut. Chromatogr., 2000, vol. 23, p. 93.CrossRefGoogle Scholar
  2. 2.
    Gonzalez, L., Yuln, G., and Volonte, M.G., J. Pharm. Biomed. Anal., 1999, vol. 20, p. 487.CrossRefPubMedGoogle Scholar
  3. 3.
    Ramaiya, A. and Karnes, H.T., J. Chromatogr., B, 1997, vol. 691, p. 119.Google Scholar
  4. 4.
    Moore, L.K. and Synovec, R.E., Anal. Chem., 1993, vol. 65, p. 2663.CrossRefGoogle Scholar
  5. 5.
    Houdiere, F., Fowler, P.W.J., and Djordjevic, N.M., Anal. Chem., 1997, vol. 69, p. 2589.CrossRefGoogle Scholar
  6. 6.
    Lubda, D., Cabrera, K., Kraas, W., et al., LC-GC, 2001, vol. 14, no.12, p. 2.Google Scholar
  7. 7. Scholar
  8. 8.
    Makela, M. and Pyy, L., J. Chromatogr., A, 1995, vol. 699, p. 49.Google Scholar
  9. 9.
    Lai, F. and White, L., J. Chromatogr., A, 1995, vol. 692, p. 11.Google Scholar
  10. 10.
    Kayali-Sayadi, M.N., Rubio-Barroso, S., Cuesta-Jimenez, M.P., and Polo-Diez, L.M., Analyst, 1998, vol. 123, p. 2145.PubMedGoogle Scholar
  11. 11.
    Hatsis, P. and Lucy, C.A., Anal. Chem., 2003, vol. 75, p. 995.PubMedGoogle Scholar
  12. 12.
    Rodrigues, A.E., LC-GC, 1993, vol. 6, p. 20.Google Scholar
  13. 13.
    Siouffi, A.M., J. Chromatogr., A, 2003, vol. 1000, p. 801.Google Scholar
  14. 14.
    Kele, M. and Guiochon, G., J. Chromatogr., A, 2002, vol. 960, p. 19.Google Scholar
  15. 15. Scholar
  16. 16.
    Sugrue, E., Nesterenko, P., and Paull, B., Analyst, 2003, vol. 128, p. 417.PubMedGoogle Scholar
  17. 17.
    Nesterenko, P.N. and Rybalko, M.A., Mendeleev Commun., 2004, vol. 14, p. 121.Google Scholar
  18. 18.
    Shatts, V.D. and Sakhartova, O.D., Vysokoeffektivnaya zhidkostnaya khromatografiya (High-Performance Liquid Chromatography), Riga: Zinatne, 1988.Google Scholar
  19. 19.
    Kiselev, A.V., Poshkus, D.V., and Yashin, Ya.I., Molekulyarnye osnovy asorbtsionnoi kromatografii (Molecular Fundamentals of Adsorption Chromatography), Moscow: Khimiya, 1986.Google Scholar
  20. 20.
    Kiselev, A.V., Mezhmolekulyarnye vzaimodeistviya v adsorbtsii i kromatografii (Intermolecular Interactions in Adsorption and Chromatography), Moscow: Khimiya, 1986.Google Scholar
  21. 21.
    Ageev, A.N. and Yashin, Ya.I., Zh. Anal. Khim., 1989, vol. 44, p. 1632.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • P. N. Nesterenko
    • 1
  • M. A. Rybalko
    • 1
  1. 1.Department of ChemistryMoscow State UniversityVorob’evy gory, MoscowRussia

Personalised recommendations